

Recent CIAM activities

EMEP Steering Body Geneva, September 13-16, 2016

Markus Amann EMEP Centre for Integrated Assessment Modelling IIASA, International Institute for Applied Systems Analysis

Some CIAM activities

 Serbia, Montenegro, Kosovo, Bosnia-H. distinguished in GAINS, with data on inventories, legislation, projections, dispersion and impacts

- Bilateral consultations, catching up with living inventories
 - Some discrepancies remain, and new emerge
 - National projections seem strategic, ignoring new legislation
 - Major incoherence in PM inventories (condensables)

Modelling the consequences of enhanced road emission standards

Hypothetical Euro 7/VII scenarios: emission standards ~1/3 of Euro 6/VI

6

New biodiversity indicators

 The monetized biodiversity benefits of an illustrative scenario that reduces excess N deposition by an additional 2% are 1.5-10 times higher than the costs, depending on the methodology for valuation of biodiversity.

- To protect biodiversity from air pollution threats, an effective strategy should reduce emissions
 - of NH₃ in Europe, to halt the loss of biodiversity,
 - and of CH₄ at the hemispheric scale, to reduce ozone damage.

80% of NH₃ emissions emerge from 5% of the farms in the EU

Source: IIASA-GAINS

The NEC proposal suggests measures for 3% of the farms, i.e., for large industrial animal holdings

9

There are large differences in the size structure of farms in the EU

 NH_3 by farm size – 2005

Source: IIASA-GAINS, based on EUROSTAT

Current policies are insufficient to avoid steep increases in global nitrogen emissions

Regional and Global Emissions of Air Pollutants: Recent Trends and Future Scenarios

Markus Amann, Zbigniew Klimont, and Fabian Wagner

Ann.Rev.Env.Res. 38(1)

Range of future NO_x and NH₃ emissions in Asia: GAINS vs RCP scenarios

Range spanned by different RCP climate scenarios

Global health impact assessment (HIA) in GAINS

- The global HIA method of WHO and Global Burden of Disease projects have been implemented in GAINS
- Main differences to the HRAPIE/WHO-Euro method:
 - Non-linear Exposure-Response (IER) functions
 - Cause-specific (IHD, COPD, stroke, lung cancer, ALRI)
 - Including natural background
- Inclusion of indoor pollution from household sources
- 'Population-attributable fraction' to scale pollution estimates with total deaths

Health and climate benefits of new energy policies

- IEA 'Energy and Air Quality' report:
 - Current policies (CPS)
 - INDCs (NPS)
 - Best practices air pollution controls (BPR)
 - Clean Air Energy Policies (CAS)

- Key findings:
 - INDCs will have health co-benefits
 - Ageing (+population growth) will counteract health benefits of air pollution controls
 - A new energy policy can reduce health impacts, and cut CO₂ emissions by 20%

China Exposure to WHO target levels

■ >35 μg/m3 ■ 25-35μg/m3 ■ 15-25 μg/m3 ■ 10-15 μg/m3 ■ <10 μg/m3

Key points

- The further evolution of emission inventories reveals important new information, but should be validated
- In-equalities in emissions and air quality impacts are important for policy making, current models catch such aspects only partially
- Need for further review of methodologies for health impact assessment
- Ageing of societies is an important factor that might counteract benefits of emission reductions