By Lucie Pluschke, Water-Energy-Food Nexus Officer at FAO # FAO, the Nexus and sustainable agriculture 3rd Task Force Meeting on the Water-Energy-Food-Ecosystems Nexus 27-29 April 2015 in Geneva ## Time to reflect on what we have done so far on the Water-Energy-Food Nexus... - O Engaged in global discussions at conferences, seminars and other events - O Developed concept note and the beginnings of some methodological approaches - O Worked with UNECE on the transboundary Nexus assessments in the Sava River and the Syr Darya - O Collaborated with GIZ and the League of Arab States on regional Nexus dialogue - O In preparation, case studies and focused discussion on Nexus implications of a specific technology; or within a given geographic scope ## What emerged from this... - O A Nexus assessment does not make sense anywhere and in any form and shape. - O Thinking, talking and implementing the Nexus seems to make most sense when it comes to: - Resource use optimization at a technical/ practical level; - Conflict resolution and dialogue at a political/higher level. - O Focus on the *process* of thinking, talking and deciding on water, energy and food-related matters in order to get to any meaningful results. ### The Nexus in the bigger context Building a common vision for sustainable food and agriculture PRINCIPLES AND APPROACHES #### Selected FAO Approaches and Frameworks | | SECTORAL APPROACHES | | | | | | | |---------------------|--|--|-------------------------------------|---|---|--|--| | | Crops | Livestock | Forestry | Fisheries | Aquaculture | | | | THEMATIC APPROACHES | Save and Grow: Sustainable Crop Production Intensification | Global
Agenda for
Sustainable
Livestock | Sustainable Forest Management (SFM) | Code of Conduct for Responsible Fisheries (CCRF) Ecosystem Approach to Fisheries (EAF) | Ecosystem Approach to Aquaculture (EAA) | | | - Conservation and **Sustainable** Use of Biodiversity and Genetic Resources - Energy-Smart Food for People and Climate (ESF) - Sustainable diets **CROSS-SECTORAL AND** - Resilient livelihoods - Climate Smart Agriculture (CSA) and FAO-Adapt - Coping with water scarcity - Global Soil Partnership (GSP) - **Sustainable** Land Management (SLM) - Landscape initiative (in development) ## Synergies and Conflicts among Agricultural Sub-Sectors ## What is sustainable agriculture? The conceptual framework ## The Five Principles of Sustainable Agriculture ### Building on ongoing initiatives ## High Impact Opportunity on the Water-Energy-Food Nexus led by FAO and BMZ - O Regional policy dialogues - O Promotion of integrated food-energy systems - O Powering Energy in Agriculture Grand Challenge (USAID) #### Regional Water Scarcity Initiative in the Near East and North Africa - O Strategic planning and policies - O Improving water management efficiency and productivity in major agricultural systems and in the food chain - O Managing the water supply through reuse and recycling of unconventional waters #### The Nexus in a specific context Entry-point for analysis and discussions | Topic | Nexus Dimension | | |---|--|--| | Groundwater management | Overextraction of groundwater resources for irrigation, using diesel/ electricity/ solar-powered pumps | | | Irrigation modernization | Water and energy use efficiency vis-à-vis economic viability of large-scale irrigation systems | | | Intensification of livestock production | On-farm waste management for bioenergy production ("closed-loop") | | ### The Nexus in a specific context | Topic | Nexus | Nexus Indicators | | | | |------------------------|--|---|--|--|--| | | Dimension | Context | Impacts | | | | Groundwater management | Overextraction of groundwater resources for irrigation, using diesel/ electricity/ solar-powered pumps | Renewable groundwater resources per capita Groundwater withdrawal rate Percentage of groundwater allocated to agriculture/ other uses Area under groundwater irrigation Number of groundwater structures for agriculture Energy consumption Agricultural fossil fuel/ electricity consumption (GkwH) Diesel/ solar/ electricity operated groundwater pumps compared to total mechanised groundwater structures Diesel/ electricity price index | Change in groundwater levels and groundwater quality Change in groundwater levels in both shallow and deep aquifers over time Change in salinity levels and selected water quality indicators over time Energy pricing Electricity subsidy (\$/ha) of groundwater irrigated area and per consumer over time Capital, O&M and disposal costs for solar pumping system Importance of groundwater to agricultural production Contribution of groundwater irrigation to agricultural GDP compared to surface water Net agricultural profit after electricity subsidy (farm/ national level) Working hours saved due to access to irrigation/ cost of operating pumps Greenhouse gas emissions GHG emissions from groundwater pumping for irrigation (electric/ diesel pumps, MtCO2e) | | | #### In conclusion... - O Integrate Nexus thinking in broader processes about sustainable development and natural resources management - O Focused interventions on specific technological, managerial or operational issue - Development of case studies