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In this Chapter procedures are described 
for summarising results of critical load and 
exceedance calculations and presenting 
them on a regional scale. The objective of 
the text below is to show the (mathematical 
and methodological) links between the 
calculation of critical loads and integrated 
assessment modelling.  
The material presented here is a summary 
of the material from CCE Status Reports 
(see Posch et al. 1995, 1997, 1999). It is 
complemented by recent EMEP 
documentation (EMEP 2013; Simpson et 
al. 2012).  

In Section VIII.1 the grid systems used by 
EMEP are defined, in Section VIII.2 
methods for the calculation of percentiles 
(in one and two dimensions) are presented, 
and in Section VIII.3 we discuss uses of 
critical loads in integrated assessment, 
including different gap closure methods, 
used to evaluate the differences between a 
reference scenario (such as past or present 
situation) and scenarios proposed for future 
policies. 

 

VIII.1 GEOGRAPHIC GRID SYSTEMS 
To make critical loads usable and useful for 
the work under the LRTAP Convention, 
one has to be able to compare them to 
deposition estimates. Deposition of sulphur 
and nitrogen compounds have earlier been 
reported by EMEP on a 150 × 150 km2 grid 
covering (most of) Europe, then 

depositions have become available on a 
50 × 50 km2 grid. Both are special cases of 
the so-called polar stereographic 
projection, which is described in the 
following. The latest grid used by EMEP 
has geographical coordinates (“latitude-
longitude grid”, cf. section VIII.1.2).  

 

VIII.1.1  THE POLAR STEREOGRAPHIC PROJECTION 
In the polar stereographic projection each 
point on the Earth's sphere is projected 
from the South Pole onto a plane per-
pendicular to the Earth's axis and 
intersecting the Earth at a fixed latitude φ0 
(see Figure A-1 in the CCE Status Report 
2001, p. 182.). Consequently, the 
coordinates x and y are obtained from the 
geographical longitude λ and latitude φ (in 
radians) by the following equations: 
(VIII.1) 
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where (xp, yp) are the coordinates of the 
North Pole; λ0 is a rotation angle, i.e. the 
longitude parallel to the y-axis; and M is the 
scaling of the x-y coordinates. In the above 
definition the x-values increase and the y-
values decrease when moving towards the 
equator. For a given unit length (grid size) 
d in the x-y plane the scaling factor M is 
given by 

(VIII.3)  ( )0sin1 φ+⋅=
d

R
M  

where R (= 6370 km) is the radius of the 
Earth. The inverse transformation, i.e. 
longitude and latitude as function of x and 
y, is given by 
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The arctan in eq.VIII.5 gives the correct 
longitude for quadrant 4 (x>xp and y<yp) 
and quadrant 3 (x<xp and y<yp); π (=180°) 
has to be added for quadrant 1 (x>xp and 
y>yp) and subtracted for quadrant 2 (x<xp 

and y>yp). Note that quadrant 4 is the one 
covering (most of) Europe. 
Every stereographic projection is a so-
called conformal projection, i.e. an angle on 
the sphere remains the same in the 
projection plane, and vice versa. However, 
the stereographic projection distorts areas 

(even locally), i.e. it is not an equal-area 
projection (see below). 
We define a grid cell  (i,j) as a square in 
the x-y plane with side length d (see 
eq.8.3) and centre point as the integral part 
of x and y, i.e. 

(VIII.6) 
 )nint(and)nint( yjxi ==  

where 'nint' is the nearest integer (rounding 
function). Consequently, the four corners of 
the grid cell have coordinates (i±½, j±½). 

 
 

VIII.1.2 GRIDS USED FOR CRITICAL LOADS MAPPING UNDE R LRTAP 
CONVENTION 

VIII.1.2.1 THE LATITUDE-LONGITUDE GRID 
The latitude-longitude grid is a plane 
projection of the EMEP domain based on 
the World Geodesic System (WGS84, 
revised in 2004). This grid system is widely 
used for GPS. This gridding combines 
information on the shape of the earth, the 
(nominal) sea level and altitude. In 
principle, the origin of this gridding system 
is the mass centre of the earth. However, 
for the two dimension grid used for 
mapping critical loads at regional scale is 
done on a two dimensional grid, the origin 
of the grid is the intersect between the 
Greenwich meridian and the equator. 
In 2012, at the 36th session of the EMEP 
Steering Body, the EMEP Centres 

suggested to increase spatial resolution of 
reported emissions. This new grid is 
defined in a geographic coordinate system 
(WGS84) with grid cells about 28 km x 28 
km. The new domain cover the geographic 
area between 30°N-82°N latitude and 
30°W-90°E longitude (Figure VIII.1, Dore 
and Vidič, 2012).  
This evolution represents a balance 
between political needs (requests for 
detailed information at country level), 
scientific needs (links with biodiversity and 
climate changes) and technical feasibility 
(availability of meteorological and emission 
data at finer scale, computation time) as of 
2014 and for the following years.  
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Figure VIII.1 : The EMEP domain over Europe. “Current”: Polar-stereographic domain (used since 
2008). ”New”: Latitude-longitude domain (proposed in 2012 (Dore and Vidič, 2012) leading to EB 

decision  2012/13). 

 

VIII.1.2.2 THE 50×50 KM2 GRID (EMEP50 GRID) 

The eulerian dispersion model of 
EMEP/MSC-W produces concentration and 
deposition fields on a 50 × 50 km2 grid with 
the parameters (see also www.emep.int): 

(VIII.7) 
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yielding M=237.7314... 
This 50 x 50 km² gridding of the EMEP 
area has been used from 1999 to the 
beginning of 2013. The domain has been 
extended from the area covered by the 
initial 150 x 150 km² grid to that presented 
in Figure VIII.2 in 2008. 
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Figure VIII.2 : The EMEP150 grid (solid lines) and EMEP50 grid (dashed lines). The numbers at 
the bottom and to the right are EMEP150 grid indices; those at the top and to the left are EMEP50 

grid indices (every third). 

 

VIII.1.2.3 THE 150×150 KM2 GRID (EMEP150 GRID) 

The coordinate system used by 
EMEP/MSC-W for the (old) lagrangian 
long-range transport model was defined by 
the following parameters (Saltbones and 
Dovland 1986): 

(VIII.8) 
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which yields M=79.2438... . 
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An EMEP150 grid cell (i,j) contains 3×3=9 
EMEP50 grid cells (m,n) with all 
combinations of the indices m=3i–2, 3i–1, 
3i and n=3j–2, 3j–1, 3j. The part of the two 

EMEP grid systems covering Europe is 
also shown in Figure VIII.2. 
This gridding of the EMEP area has been 
used until 1997.  

 
To convert a point (xlon,ylat), given in degrees of longitude and latitude, into EMEP 
coordinates (emepi,emepj), the following FORTRAN subroutine can be used: 
 
      subroutine  llemep  (xlon,ylat,par,emepi,emep j) 
! 
!     This subroutine computes for a point (xlon,yl at), where xlon is the 
!     longitude (<0 west of Greenwich) and ylat is the latitude in degrees, 
!     its EMEP coordinates (emepi,emepj) with param eters given in par(). 
! 
!     par(1) ... size of grid cell (km) 
!     (par(2),par(3)) = (xp,yp) ... EMEP coordinate s of the North Pole 
! 
      real(4)            xlon, ylat, par(*), emepi,  emepj 
! 
      data  Rearth /6370./       ! radius of spheri cal Earth (km) 
      data  xlon0 /-32./         ! = lambda_0 
      data  drm /1.8660254/      ! = 1+sin(pi/3) = 1+sqrt(3)/2 
      data  pi180 /0.017453293/  ! = pi/180 
      data  pi360 /0.008726646/  ! = pi/360 
! 
      em = (Rearth/par(1))*drm 
      tp = tan((90.-ylat)*pi360) 
      rlamp = (xlon-xlon0)*pi180 
      emepi = par(2)+em*tp*sin(rlamp) 
      emepj = par(3)-em*tp*cos(rlamp) 
                                        return 
      end subroutine llemep 

 
EMEP50 coordinates are obtained by calling the above subroutine with par(1)=50, 
par(2)=8 and par(3)=110; and EMEP150 coordinates are obtained with par(1)=150, 
par(2)=3 and par(3)=37. Conversely, the EMEP coordinates of a point can be converted 
into its longitude and latitude with the following subroutine : 
 
      subroutine  emepll  (emepi,emepj,par,xlon,yla t) 
! 
!     This subroutine computes for a point (emepi,e mepj) in the EMEP 
!     coordinate system, defined by the parameters in par(), its 
!     longitude xlon and latitude ylat in degrees. 
! 
!     par(1) ... size of grid cell (km) 
!     (par(2),par(3)) = (xp,yp) ... EMEP coordinate s of the North Pole 
! 
      real(4)            emepi, emepj, par(*), xlon , ylat 
! 
      data  Rearth /6370./      ! radius of spheric al Earth (km) 
      data  xlon0 /-32./        ! = lambda_0 
      data  drm /1.8660254/     ! = 1+sin(pi/3) = 1 +sqrt(3)/2 
      data  pi180 /57.2957795/  ! = 180/pi 
      data  pi360 /114.591559/  ! = 360/pi 
! 
      emi = par(1)/(Rearth*drm) ! = 1/M 
      ex = emepi-par(2) 
      ey = par(3)-emepj 
      if (ex == 0. .and. ey == 0.) then ! North Pol e 
        xlon = xlon0 ! or whatever 
      else 
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        xlon = xlon0+pi180*atan2(ex,ey) 
      endif 
      r = sqrt(ex*ex+ey*ey) 
      ylat = 90.-pi360*atan(r*emi) 
                                        return 
      end subroutine emepll 

 

VIII.1.3 THE AREA OF AN EMEP GRID CELL 
As mentioned above, the stereographic 
projection does not preserve areas, e.g. a 
50 × 50 km2 EMEP grid cell is 2,500 km2 
only in the projection plane, but never on 
the globe. The area A of an EMEP grid cell 
with lower-left corner (x1, y1) and upper-
right corner (x2, y2) is given by: 
(VIII.9) 
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where u1=(x1 – xp)/M, etc.; and I(u,v) is the 
double integral (see Posch et al. 1997 for 
details): 

(VIII.10) 
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These two equations allow the calculation 
of the area of the EMEP grid cell (i,j) by 
setting (x1,y1)=(i–½, j–½) and (x2, y2)=(i+½, 
j+½).  
 
 
 

The following FORTRAN functions compute the area of an EMEP grid cell for arbitrary grid 
indices (i,j), for the EMEP50 or the EMEP150 grid, depending on the parameters in par() 
(see above): 
      real function  aremep  (par,i,j) 
! 
!     Returns the area (in km2) of an ax-parallel c ell with  
!     centerpoint (i,j) in the EMEP grid defined by  par(). 
! 
!     par(1) ... size of grid cell (km) 
!     (par(2),par(3)) = (xp,yp) ... EMEP coordinate s of the North Pole 
! 
      integer(4)         i, j 
      real(4)            par(*) 
! 
      external           femep 
! 
      data  Rearth /6370./    ! radius of spherical  Earth (km) 
      data  drm /1.8660254/   ! = 1+sin(pi/3) = 1+s qrt(3)/2 
! 
      x1 = real(i)-0.5 
      y1 = real(j)-0.5 
      emi = par(1)/(Rearth*drm) ! = 1/M 
      u1 = (x1-par(2))*emi 
      v1 = (y1-par(3))*emi 
      u2 = u1+emi 
      v2 = v1+emi 
      ar0 = 2.*Rearth*Rearth 
      aremep = ar0*(femep(u2,v2)-femep(u1,v2)-femep (u2,v1)+femep(u1,v1)) 
                                        return 
      end function aremep 
! 
      real function  femep  (u,v) 
! 
!     Function used in computing the area of an EME P grid cell. 
! 
      real(4)            u, v 
! 
      ui = 1./sqrt(1.+u*u) 
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      vi = 1./sqrt(1.+v*v) 
      femep = v*vi*atan(u*vi)+u*ui*atan(v*ui) 
                                        return 
      end function femep  
The area distortion ratio α, i.e. the ratio 
between the area of a small rectangle in 
the EMEP grid and its corresponding area 
on the globe is obtained as (Posch et al. 
1999): 

(VIII.11) 

2
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which shows that the distortion ratio 
depends on the latitude φ only, and (small) 
areas are undistorted, i.e. α =1, only at 
φ=φ0=60°. 
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VIII.2 COMPARING CRITICAL LOADS: CUMULATIVE DISTRIBUTION 
FUNCTIONS, PERCENTILES AND PROTECTION ISOLINES  
Cumulative distribution functions and 
percentiles allow a statistical description of 
critical loads and other parameters used by 
countries.  
Cumulative distribution functions are useful 
to assess and compare the range of critical 
loads values and of other parameters 
Percentiles allow excluding extreme values 
and therefore to increase the robustness of 
assessments. 

In this section we first define and 
investigate different methods for calculating 
percentiles of a cumulative distribution 
function (cdf) given by a finite number of 
values. Then we generalise the concept of 
a percentile to the case in which the cdf is 
defined by a set of functions (critical load 
functions), resulting in the so-called 
percentile function (protection isoline).  

 

VIII.2.1 CUMULATIVE DISTRIBUTION FUNCTION 
Assume we have critical load values, xi, for 
n ecosystems. We sort these values in 
ascending order, resulting in a sequence x1 
≤ x2 ≤ … ≤ xn. Each value is accompanied 
by a weight (area) Ai (i=1,...,n), 
characterizing the size (importance) of the 
respective ecosystem. From these we 
compute normalized weights wi according 
to 
(VIII.12) 
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resulting in: 
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The cumulative distribution function (cdf) of 
these n critical load values is then defined 
by: 

(VIII.14) 
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(VIII.15) 
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F(x) is the probability of a critical load being 
smaller than (or equal to) x, i.e. 1–F(x) is 
the fraction of ecosystems protected. With 
this definition F(x) has the mathematical 
properties of a cdf: F is a monotonously 
increasing right-continuous function with 
F(–∞)=0 and F(∞)=1. In Figure VIII.3 an 
example of a cdf is shown; note that the 
function assumes only a finite number of 
values. 

 
Figure VIII.3 : (a) Example of a cumulative distribution function for n=5 data points (x1<x2<x3<x4<x5, 

with weights w1=2/15, w2=4/15, w3=5/15, w4=1/15, w5=3/15). The filled (empty) circles indicate 
whether a point is part (not part) of the function. (b) The same cdf is drawn by connecting all points, 

the way a cdf is usually displayed.  
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VIII.2.2 QUANTILES AND PERCENTILES 
All ecosystems in a region (grid cell) are 
protected, if deposition stays below the 
smallest critical load values. However, to 
discard outliers and to account for 
uncertainties in the critical load 
calculations, but also to ensure that a 
sufficient percentage of ecosystems are 
protected, (low) percentiles of the cdf are 
compared to the deposition. 
The q-th quantile (0≤q≤1) of a cdf F, 
denoted by xq, is the value satisfying 

(VIII.16)  qxF q =)(  

which means that xq, viewed as a function 
of q, is the inverse of the cdf, i.e. xq=F–1(q). 
Percentiles are obtained by scaling 
quantiles to 100, i.e. the p-th percentile is 
the (p/100)-th quantile. Other terms used 
are median for the 50-th percentile, lower 
and upper quartile for the 25-th and 75-th 
percentile, respectively. Note that the p-th 
percentile critical load protects 100–p 
percent of the ecosystems. 
Computing quantiles, i.e. the inverse of a 
cdf given by a finite number of points poses 
a problem: due to the discrete nature of the 
cdf, a unique inverse simply does not exist. 
For many values of q no value xq exists at 

all so that eq.VIII.16 holds; and for the n 
values xi such a value exists (i.e. q=F(xi)), 
but the resulting quantile is not unique – 
every value between xi and xi+1 could be 
taken (see Figure VIII.2). Therefore, the cdf 
is approximated (interpolated) by a function 
which allows solving eq.VIII.16 for every q. 
There is neither a unique approximation, 
nor is there a single accepted way for 
calculating percentiles: Posch et al. (1993) 
discuss six methods for calculating 
percentiles. Note that commonly definitions 
are given for data with identical weights 
(i.e. wi=1/n), but the generalization to 
arbitrary weights is mostly straightforward. 
It should be also born in mind that the 
differences between different 
approximation methods vanish when the 
number of points becomes very large (and 
all weights small). 
In the following we have a closer look at 
two types of quantile functions: (a) those 
derived from linearly interpolating the cdf, 
and (b) those using the empirical cdf. After 
defining their equations for arbitrary 
weights we discuss their advantages and 
disadvantages. 

VIII.2.2.1 LINEAR INTERPOLATION OF THE CDF 

In this case the quantile function is the inverse of the linearly interpolated cdf given by: 

(VIII.17)  










=

≤<−⋅−+

=≤

= +
+

+

nk

WqW
w

Wq
xxx

Wwqx

x kk
k

k
kkkq

,...,1

for)(

for

1
1

1

111

 

where the Wk are defined in eq.VIII.15. An example is shown in Figure VIII.4a. 
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Figure VIII.4 : Examples of the two quantile functions discussed in the text. Values and weights are 
the same as in Figure VIII.4. The filled (empty) circles indicate whether a point is part (not part) of 

the function. The thin horizontal lines indicate the cumulative distribution function. Note that for 
almost all values of q (e.g. q=0.35) the resulting quantile is smaller in (a) than in (b). 

 

The advantage of this quantile function is 
that it is continuous, i.e. a small change in 
q leads to only a small change in the 
resulting quantile xq. However, it has the 
following three disadvantages: 
(i) In case of two (or more) identical data 
points the definition of the quantile function 
is not unique: for identical critical load 
values the shape of the interpolation 
function depends on the order of the 

weights (see Figures VIII.5 a,a'). This could 
be resolved by sorting the weights of 
identical data points according to size 
(smallest first, as in Figures VIII.5a.b). This 
minimizes the difference to the empirical 
distribution function (see below), but 
requires fairly complicated (and time-
consuming) routines for the actual 
computations. 

 
Figure VIII.5 : Examples of the two quantile functions discussed in the text. Values and weights are 

the same as in Figure VIII.2, except that x3=x4 (compare Figure VIII.5). Note, that for the linearly 
interpolated quantile function (a,a') its shape depends on the order of the weights for the identical 

values. 
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(ii) As mentioned above, a critical load xq is 
selected to protect the (1–q)-th fraction of 
the ecosystems within a given region (grid 
cell). However, for the linear interpolated 
quantile function certain choices of q result 
in xq-values which are below the actual 
value needed to protect a fraction 1–q of 
the ecosystems (see example in Figure 
VIII.4). This is protective for the 
ecosystems, but may lead to higher costs 
for abatement. 
(iii) The computation of quantiles is not 
order-preserving when using linear 
interpolation. We say the order is 
preserved by a quantile function, if the 
following holds for two cdfs: 

(VIII.18) 
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i.e. the smaller cdf leads to smaller 
quantiles. In Figure 8.5a an example is 
shown with two data sets for the same n 
ecosystems, x1,...,xn and y1,...,yn with 
common weights w1,...,wn and the property 
xi < yi for i=1,...,n (e.g. CLmin's and CLmax's). 
But for certain values of q it turns out that 
xq > yq when computed by linear 
interpolation (Fig. VIII.6a). 

 
Figure VIII.6 : Example of two quantile functions for 3 values each (x1, x2, x3 and y1, y2, y3) and 

common weights w1, w2, w3 and the property xi<yi for i=1,2,3. However, in case (a) the median x0.5 
is greater than the median y0.5. 

VIII.2.2.2 EMPIRICAL DISTRIBUTION FUNCTION: 
In this case the quantile function assumes 
only values defining the cdf: 
(VIII.19) 
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An example of this quantile function is 
shown in Figure VIII.5b. The disadvantage 
of this quantile function is that it is not 
continuous, i.e. a very small change in q 
may lead to a significant change in the 
quantile xq (jump from xi to xi" 1). 

However, none of the disadvantages of the 
linear interpolation holds for this function, 
but: 

(i) identical values do not lead to 
ambiguities (see Figures VIII.5b,b'), 
(ii) the quantile xq protects (at least) a 
fraction q of the ecosystems (see Figure 
VIII.4b), and 
(iii) the computation of quantiles is order-
preserving (see eq.VIII.18 and Figure 
VIII.6b). 
It is especially property (iii) which makes 
the empirical distribution function the only 
viable choice for computing percentiles. 
The following FORTRAN subroutine 
computes the q-quantile of a given vector 
of data with a corresponding vector of 
weights. The data have to be sorted in 
ascending order, but the weights do not 
have to be normalised to one. 

  

x1 y1 x2 y2x3 y3
0

0.2

0.4

0.6

0.8

1.0

(a)

x1 y1 x2 y2x3 y3
0

0.2

0.4

0.6

0.8

1.0

(b)



 

  Update: 2 March 2015 

Chapter VIII – General mapping issues  Page VIII - 16 

      subroutine  qantilcw  (q,num,vec,wei,xq) 

! 

!     This subroutine computes the q-quantile xq of  the num values in vec() 

!     - sorted in ascending order - with correspond ing weights wei() 

!     from the empirical distribution function. 

! 

      integer(4)         num 

      real(4)            q, vec(*), wei(*), xq 

! 

      if (num == 0) stop 'Quantile of nothing?!' 

      if (q < 0. .or. q > 1.) stop 'q outside [0,1] !' 

! 

      wsum = wei(1) 

      do k = 2,num 

        wsum = wsum+wei(k) 

        if (vec(k) < vec(k-1)) stop 'Data not sorte d!' 

      end do 

! 

      qw = q*wsum 

      sum = 0. 

      do k = 1,num 

        sum = sum+wei(k) 

        if (qw < sum) then 

          xq = vec(k) 

                                        return 

        end if 

      end do 

      xq = vec(num) ! if q=1 

                                        return 

      end subroutine qantilcw 

 

VIII.2.3 PERCENTILE FUNCTIONS AND PROTECTION ISOLIN ES 
In this section we generalize of the concept 
of cumulative distribution function (cdf) and 
quantile (percentile) to the case when the 
data (e.g. critical loads) are given as a 
functions (rather than as single values), 
which is the case when considering two 
pollutants (e.g. sulphur and nitrogen in the 
case of acidification), leading to the so-
called percentile function or (ecosystem) 
protection isoline. 
In the following we assume that a (critical 
load) function is defined by a set of pairs of 
values (nodes) (xj,yj), (j=1,...,m), and the 
function is given by connecting (x1,y1) with 
(x2,y2) etc., in this way generating a 
polygon in the x-y plane. We denote this 
polygon by: 

(VIII.21) 
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For the values xj and yj we assume that: 

(VIII.22) 
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i.e. the nodes on the polygon are 
numbered from left to right, starting on the 
y-axis and ending on the x-axis. Eq.VIII.22 
also ensures that the polygon is 
monotonically decreasing, when 
considered as a function of x or y. 
(Alternatively, the numbering could start on 
the x-axis, etc.). With the notation (x,y)<f 
we mean that the point (x,y) lies below the 
polygon (i.e. critical loads are not 
exceeded).  
Considering the critical load for S and N 
acidity the critical load function for an 
ecosystem is defined by 3 values, namely 
CLmin(N), CLmax(N) and CLmax(S), and as a 
polygon with m=3 nodes it is written 
according to eq.VIII.21 as: 
(VIII.23) 
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where we assumed that the N-deposition is 
plotted along the x-axis and the S-
deposition along the y-axis. 
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Now we assume that we have n critical 
load functions f1,...,fn with respective 
weights w1,...,wn (Σwi=1). In general it will 
not be possible to sort these critical load 
functions, i.e. it is not possible to say that fi 
is larger or smaller than fj, because 
CLmax(S) for fi could be larger and CLmax(N) 
smaller than the corresponding values for fj 
(see Figure VIII.7 for examples). 
Nevertheless, we can define a cumulative 
distribution function F in the following way: 
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meaning that for a given point (x,y) we sum 
all weights wi for which (x,y)<fi, i.e. for 
which there is no exceedance. Obviously 
0≤F(x,y)≤1, and F has also otherwise all 
properties of a (two-dimensional) cdf. A 
percentile p is now easily defined as the 
intersection of such a function with a 
horizontal plane at height q=p/100. The 
result (projected onto the x-y plane) is a 
curve, more precisely a polygon which has 
the property defined in eq.VIII.22. Let fq be 
the quantile (percentile) function for a given 
q, then every point (x,y), i.e. every pair of N 
and S deposition, with (x,y)<fq protects (at 

least) a fraction of 1–q of the ecosystems; 
and fq is also called a (ecosystem) 
protection isoline. Note that protection 
isolines for the same set of polygons 
(critical load functions) do not intersect 
(although they might partly coincide), and 
for r<s fr lies below fs. 
Since an exact computation of a percentile 
function is hardly feasible (especially in 
case of a large number of critical load 
functions), we have to use an approximate 
method (see Figure VIII.7): we draw rays 
through the origin of the x-y plane (i.e. lines 
with a constant S:N deposition ratio) and 
compute the intersections of these rays 
with all critical load functions (small circles 
in Figure VIII.7a). For each ray the 
intersection points are sorted according to 
their distance from the origin and the 
chosen quantiles of these distances are 
calculated according to eq.VIII.19. Finally, 
the resulting quantile values are connected 
to obtain the percentile functions 
(protection isolines). Obviously, the more 
rays are used in this procedure the more 
accurate are the protection isolines. As 
Figure VIII.8b shows, a protection isoline 
need not be convex. 

 
Figure VIII.7 : Computation of protection isolines: (a) set of critical load functions and intersection of 
these CL-functions with rays from the origin (small circles); (b) computing the percentiles (q=0.25, 

0.50 and 0.75 in this case) along each ray (small diamonds) and connecting them to obtain the 
protection isolines (thick [red] lines). 
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VIII.3 CRITICAL LOAD EXCEEDANCES USED IN INTEGRATED  
ASSESSMENT MODELLING 
 

VIII.3.1 GAP CLOSURE METHODS 
Except for the earliest protocols, integrated 
assessment modellers have used uniform 
percentage reductions of the excess 
deposition (so-called gap closures) to 
define emission reduction scenarios. In the 
following we summarize the different gap 
closure methods used and illustrate them 
for the case of a single pollutant. This 
section follows largely Posch et al. (2001). 
In the 1994 Sulphur Protocol, only sulphur 
was considered as acidifying pollutant (N 
deposition was fixed; it determined, 
together with N uptake and immobilization, 
the sulphur fraction). Furthermore, taking 
into account the uncertainties in the CL 
calculations, it was decided to use the 5-th 
percentile of the critical load cdf in a grid 
cell as the only value representing the 
ecosystem sensitivity of that cell. And the 
exceedance was simply the difference 
between the (current) S deposition and that 
5-th percentile critical load. This is 
illustrated in Figure VIII.8a): Critical loads 

and deposition are plotted along the 
horizontal axis and the (relative) ecosystem 
area along the vertical axis. The thick solid 
and the thick broken lines are two exam-
ples of critical load cdfs (which have the 
same 5-th percentile critical load, indicated 
by ‘CL’). ‘D0’ indicates the (present) 
deposition, which is higher than the CLs for 
85% of the ecosystem area. The difference 
between ‘D0’ and ‘CL’ is the exceedance in 
that grid cell. It was decided to reduce the 
exceedance everywhere by a fixed 
percentage, i.e. to ‘close the gap’ between 
(present) deposition and (5-th percentile) 
critical load. In Figure VIII.8a, a deposition 
gap closure of 60% is shown as an 
example. As can be seen, a fixed 
deposition gap closure can result in very 
different improvements in ecosystem 
protection percentages (55% vs. 22%), 
depending on the shape of the critical load 
cdf.

. 
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Figure VIII.8 : Cumulative distribution function (thick solid line) of critical loads and different 

methods of gap closure: (a) deposition gap closure, (b) ecosystem gap closure, and (c) 
accumulated exceedance (AE) gap closure. The thick dashed line in (a) and (b) depict another cdf, 
illustrating how different ecosystem protection follows from the same deposition gap closure (a), or 

how different deposition reductions are required to achieve the same protection level (b). 
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To take into account all critical loads within 
a grid cell (and not only the 5-th percentile), 
it was suggested to use an ecosystem area 
gap closure instead of the deposition gap 
closure. This is illustrated in Figure VIII.8b: 
for a given deposition ‘D0’ the ecosystem 
area unprotected, i.e. with deposition 
exceeding the critical loads can be read 
from the vertical axis. After agreeing to a 
certain (percent) reduction of the 
unprotected area (e.g. 60%), it is easy to 
compute for a given cdf the required 
deposition reduction (‘D1’ and ‘D2’ in 
Figure VIII.8b). Another important reason to 
use the ecosystem area gap closure is that 
it can be easily generalized to two (or 
more) pollutants, which is not the case for a 
deposition-based exceedance. This 
generalization became necessary for the 
negotiations of the 1999 Gothenburg 
Protocol, as both N and S contribute to 
acidification. Critical load values have been 
replaced by critical load functions and 
percentiles replaced by ecosystem 
protection isolines (see above). However, 
the use of the area gap closure becomes 
problematic if only a few critical load values 
or functions are given for a grid cell. In 
such a case the cdf becomes highly 

discontinuous, and small changes in 
deposition may result in either no increase 
in the protected area at all or large jumps in 
the area protected. 
To remedy the problem with the area gap 
closure caused by discontinuous cdfs, the 
accumulated exceedance (AE) concept has 
been introduced (see above). In the case of 
one pollutant, the AE is given as the area 
under the cdf of the critical loads (the entire 
grey-shaded area in Figure VIII.8c). 
Deposition reductions are now negotiated 
in terms of an AE (or AAE) gap closure, 
also illustrated in Figure VIII.8c: a 60% AE 
gap closure is achieved by a deposition 
‘D1’ which reduces the total grey area by 
60%, resulting in the dark grey area; also 
the corresponding protection percentage 
(67%) can be easily derived. The greatest 
advantage of the AE and AAE is that it 
varies smoothly as deposition is varied, 
even for highly discontinuous cdfs, thus 
facilitating optimization calculations in 
integrated assessment. The advantages 
and disadvantages of the three gap closure 
methods described above are summarized 
in the following table. 

 

 Advantages Disadvantages 

Deposition gap closure 
(used for the 1994 
Sulphur Protocol) 

• Easy to use even for 
discontinuous cdfs (e.g. grid 
cells with only one CL). 

• Takes only one CL value 
(e.g. 5th percentile) into 
account. 

• May result in no increase in 
protected area. 

• Difficult to define for two 
pollutants. 

Ecosystem area gap 
closure 
(used for the EU 
Acidification Strategy) 

• In line with the goals of CL use 
(maximum ecosystem 
protection). 

• Easy to apply to any number of 
pollutants. 

• Difficult (or even impossible) 
to define a gap closure for 
discontinuous cdfs (e.g. grid 
cells with only one CL). 

Accumulated 
Exceedance (AE) gap 
closure 
(used for the 1999 
Gothenburg Protocol) 

• AE (and AAE) is a smooth and 
convex function of deposition 
even for discontinuous cdfs.  

• AE stretches the limits of the 
critical load definition.* 

• Exceedance definition not 
unique for two or more 
pollutants. 

* It assumes a linear damage function. However, this feature could also be an advantage. 
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VIII.3.2 LINEAR EMISSION-EXCEEDANCE RELATIONSHIPS 
The change to higher resolutions of the 
EMEP grid and the introduction of new 
pollutants (in particular PM) has led to a 
significant increase of required calculations 
for optimization exercises of scenarios. In 
order to keep computing times at a 
workable level, the methodology to 
calculate critical loads exceedances has 
been simplified. The new approach has 
been inspired by the Life Cycle Impact 
Analysis (LCIA) community which uses the 
simplest approach possible, i.e. a linear 
relationship between emission (changes) 
and impact (changes) on ecosystems. 
Models and factors are described and 
defined in Posch et al. (2005).  
In practice, linear relationships are defined 
between the emission and the average 
accumulated exceedances for each 
country. This linearization requires 
deposition fields computed exactly with a 
full atmospheric transport model for the 

reference scenario (for instance “current 
legislation” scenario). The coefficients of 
the linear relationship are “impact” or 
“damage” factors. They are site or country 
dependant. The impact factors are 
computed by changing the emission of one 
pollutant at the time in a given source 
region, compared to the reference 
scenario, leaving the emissions of the other 
pollutants and all other source regions 
unchanged (further details in Posch et al. 
2005). 
The approach makes it feasible to assess 
several policy scenarios. Errors on the 
results remain small if the assessed 
scenario remains close to the reference 
scenario: tests have shown that when the 
emissions are reduced by up to 20%, the 
linear model produces good 
approximations. Besides, approximations 
become poor when exceedances become 
close to 0.  
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