Small Scale Water Supplies

Oliver Schmoll

Why focus on small supplies?

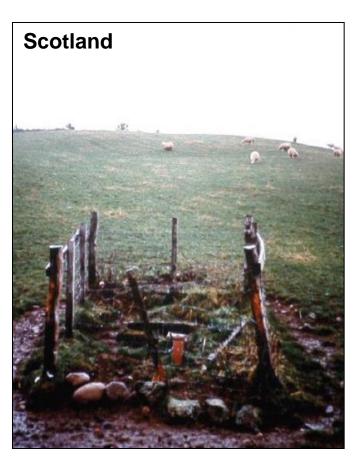
Backbone of water supply in rural areas

- Need for decentralised solutions for technical, economic and hygienic reasons:
 - Often not densely populated areas
 - Widely dispersed over large areas
 - Permanent residents and transient users

What is a "small scale water supply"?

- **Size** of the supply:
 - Widely varying classification schemes
 - Often derived from regulatory definitions
- Varying organisational set-up:
 - Community managed
 - Publicly or municipality managed
 - Regional water board associations
 - Privately owned and operated
- Technical specification:
 - Centralised vs. non-centralised

Different versions – publicly managed



Different versions – privately managed

Common features and challenges

- Differently or not regulated
- Limited technical, personal and financial resources
- Involvement of untrained and part-time staff
- Lack of sense of responsibility
- Inaccurate perception of water-related health risks
- Lack of access to "support networks"
- Poor compliance

Critical pollution risk issues

- Zoonotic diseases:
 Cattle breeding and wildlife
- Poor manure management
- Poor sanitary protection
- Inadequate local sanitation practices
- Disrupted infrastructures and lack of electricity

Rainfall: probability of failure rate

Type of source	Groundwater	1.000	9.09E-12
	Surface water	2.347	
	Spring	2.342	
Treatment	Treatment 1.000		3.77E-07
	No treatment	1.781	
Rain on day prior	0	1.000	0.0016
to sample (mm)	1-9	1.325	
	10-99	1.364	
	100-999	1.707	
	1000-9999	2.066	

Source: Hunter et al 2008

Lack of knowledge /1

- Disease surveillance in small communities:
 - Largely under-reported
 - Ad-hoc, response-based vs. systematic

- Limited routine and ongoing water quality surveillance:
 - Widespread areas
 - Limited manpower to advise, inspect and control
 - One sample per year at best

Lack of knowledge /2

- Little readily available "hard" data:
 - Information biased to urban areas
 - High degree of anecdotal evidence (NGO or project-based work)
 - Data often scattered between institutions
 - Outdated

Rapid situation assessment

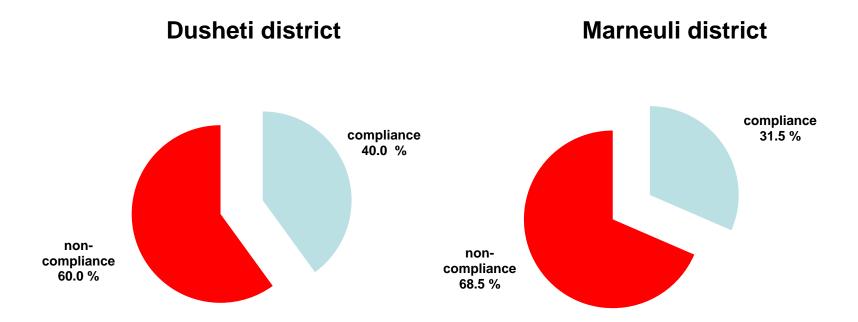
- Water safety of small scale supplies and associated health outcomes are of priority concern
- Little routine monitoring in rural areas
- Systematic baseline analysis in two exemplary districts in 2011 and 2012

Summary survey design

Technologies covered in survey		Population covered in survey		Samples/inspections included in survey		
Туре	No.	Fraction	No.	Fraction	Location	No.
Borehole	26	21 %	39,000	66 %	Source	122
Spring	23	18 %	10,837	18 %	Storage reservoir	33
Dug well	71	56 %	2,770	5 %	Distribution system	79
Unknown	6	5 %	6,910	12 %	Household container	26
Total	126	100 %	59,517	100 %	Total	260

Parameters and sampling

Microbial	Physico- chemical	Organoleptic
Total coliforms	Nitrate (NO ₃ -)	Turbidity
Escherichia coli	Ammonia (NH ₄ +)	Temperature
Faecal streptococci	Iron (Fe)	Taste and odour
	Fluoride (F) Copper (Cu) pH	Total dissolved solids (TDS)
	Free chlorine residual	


Excurse to Georgia: Sanitary inspections

- Major sanitary risk factors identified:
 - Cracks or breaks in the infrastructure
 - Old and leaking pipes (potential for secondary contamination)
 - Unsanitary conditions around the source
 - Latrines / sewers near to source
 - Animal access to source

Compliance with standard for *E. coli*

Excurse to Georgia: Compliance levels

Parameter	Dusheti	Marneuli				
Micr	Microbiological					
Total coliforms	33 %	27 %				
Escherichia coli	40 %	32 %				
Faecal streptococci	66 %	79 %				
Physico-chemical and organoleptic						
NO ₃ , NH ₄ , Fe, Cu, F, turbidity	100 %	100 %				
Chlorine residuals	22 %	0 %				
TDS	98 %	91 %				
Overall compliance						
All parameters	26 %	20 %				

Comparative risk analysis for Marneuli

E. coli count	Sanitary inspection score			
(1/100 ml)	0-2	3-5	6-8	9-10
>100	2	2	1	0
11-100	15	34	8	0
1-10	30	25	9	0
<1	23	32	3	0

Risk level	Low	Intermediate	High	Very high
Priority action level	No action required	Low action priority	Higher action priority	Urgent action required
Proportion	13 %	47 %	38 %	3 %

Excurse to Georgia: Conclusions

- Microbial contamination is significant, chemical contamination is currently not of concern
- Low overall compliance with the national standards
- Disinfection is absent or, where in place, inadequate
- Significant number of sanitary risk factors
- Lack of routine ongoing surveillance
- Limited public awareness on water hygiene

Is it worth to improve?

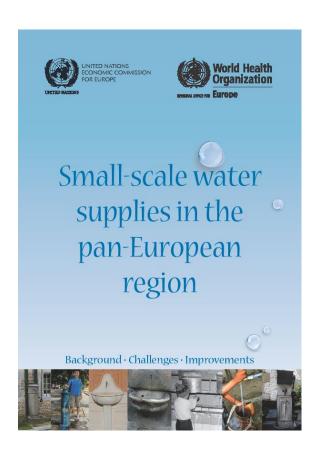
- Positive cost-benefit ratio for reduction of acute diarrhoeal illness likely to be prevented by interventions
 - Costs of legislation and investment in improvement interventions
 - Direct cost of illness (e.g. health care)
 - Indirect cost of illness (e.g. loss of work, loss of schooling)

Subregion	Cost-Benefit-Ratio		
	Mean	L95%CI	U95%CI
Eur-A	2.52	0.78	5.88
Eur-B	21.34	6.64	49.89
Eur-C	3.91	1.22	9.14

Source: Hunter et al 2008

Needs for improvement /1

- Strengthen national evidence base for informed decision making
- Targeted rapid assessments of drinking water quality
- Develop guidance for establishing
 "intelligent" surveillance strategies:
 - Ongoing drinking-water quality surveillance
 - Disease surveillance
 - Local outbreak detection and response approaches


Needs for improvement /2

- Create enabling environment:
 - Resource centers
 - Ongoing capacity building
 - Access to easy-to-understand guidance
 - Partnership arrangements

- Scale-up WHO "Water Safety Plan" approach:
 - Viable and applicable in small supplies
 - Develop "demonstration" projects

Awareness raising document

- What are small-scale water supplies?
- Why are they important?
- What are the challenges?
- What is the evidence?
- What are the cost and benefits of interventions?
- How can Water Safety Plans support improvement?
- How can an enabling environment be created?
- Networking and resource materials

What can be done under the Protocol?

Target setting:

- Regulatory requirements established?
- Requirements enforced?
- Water quality status known?
- Risk factors known?
- Operators trained?
- Access to information and guidance provided?
- Surveillance mechanisms adequately established?
- **—** ...

Programme of work 2014-2016

- Development of best practice policy guidance
- Sensitisation and capacity building
- Improvement of evidence base:
 - Analysis of regional questionnaire
 - Support to national rapid assessments
- Scale-up of WSP uptake:
 - WSP field guidance
 - Training of WSP facilitators
 - Demonstration projects

Upcoming event

- Meeting of the WHO Small Community Water Supply Management Network on 26–27 June 2014 in Bishkek, Kyrgyzstan
 - Sanitary inspections of small supplies
 - Risk assessment tools
 - Field testing of water quality
 - WSPs for small community supplies
 - WHO guidelines (volume 3) on small community supplies
 - Policy goals versus practical realities faced by small community water supplies

Thank you

