

## Task Force on Integrated Assessment Modelling

39<sup>th</sup> meeting

23-25 February – Stockholm

72 participants, including ~ 10 from EECCA

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE



# Factors determining European $SO_2$ and $NO_x$ emissions 1970-2010



Avoided through energy intensity improvement of GDP

- Avoided through changes in the energy mix
- Avoided through end-of-pipe measures
- Remaining emissions

---- Hypothetical uncontrolled emissions for constant energy intensity and fuel mix

ACCENT

#### Emissions of all pollutants decline, but ammonia hardly







## Ambition levels for Europe: trade-off between costs and impacts

|                               |                         | 2020 BL | LOW  | Low* | MID   | High* | HIGH   | MTFR   |
|-------------------------------|-------------------------|---------|------|------|-------|-------|--------|--------|
| Aadditonal cost above BL 2020 |                         |         |      |      |       |       |        |        |
| Costs                         | million €/yr            | 0       | 610  | 905  | 2.262 | 5.380 | 10.752 | 69.155 |
|                               | % of GDP                | 0       | 0,00 | 0,01 | 0,01  | 0,03  | 0,07   | 0,45   |
| Resulting changes from 2000   |                         |         |      |      |       |       |        |        |
| Reduced impacts %             | Loss in life expectancy | 43      | 51   | 51   | 57    | 63    | 63     | 69     |
|                               | Acidification           | 69      | 74   | 76   | 80    | 85    | 84     | 89     |
|                               | Eutrophication          | 29      | 36   | 42   | 45    | 50    | 50     | 57     |
|                               | Premature deaths ozone  | 32      | 34   | 34   | 35    | 36    | 39     | 41     |



Each step =

- ~ 10.000 live years gained
- ~ € 2 billion savèd due to less absence
- ~ 20.000 km<sup>2</sup> protected from acidification
- ~150.000 km<sup>2</sup> protected from eutrophication
- But at increasing costs

What choice to make?

## **TSAP: willingness to pay**

= € 1.5 bn

|                               |                         | 2020 BL | LOW  | Low* | MID  | High* | HIGH  | MTFR   |
|-------------------------------|-------------------------|---------|------|------|------|-------|-------|--------|
| Aadditonal cost above BL 2020 |                         |         |      |      |      |       |       |        |
| Costs                         | million €/year          | 0       | 245  | 319  | 864  | 2.288 | 3.807 | 49.117 |
|                               | % of GDP                | 0       | 0,00 | 0,00 | 0,01 | 0,02  | 0,05  | 0,65   |
| Resulting changes from 2000   |                         |         |      |      |      |       |       |        |
| Reduced impacts %             | Loss in life expectancy | 52      | 56   | 56   | 59   | 63    | 63    | 69     |
|                               | Acidification           | 70      | 74   | 76   | 80   | 84    | 84    | 88     |
|                               | Eutrophication          | 21      | 28   | 34   | 37   | 42    | 42    | 50     |
|                               | Premature deaths ozone  | 34      | 37   | 37   | 38   | 39    | 41    | 43     |
| Emission reduction %          | SO2                     | 74      | 75   | 74   | 76   | 80    | 79    | 83     |
|                               | NOx                     | 55      | 57   | 58   | 59   | 60    | 62    | 64     |
|                               | PM2.5                   | 39      | 46   | 45   | 48   | 52    | 52    | 67     |
|                               | NH3                     | 9       | 18   | 27   | 30   | 35    | 32    | 41     |
|                               | VOC                     | 46      | 49   | 49   | 50   | 51    | 55    | 63     |

#### Risks:

- No reduction in non-EU countries

- Energy policy in 2020BL less successful: then higher costs, and additional NH3 reduction would become more cost-effective

## There is potential for further cost-effective action with large benefits



### Cost-Benefit Analysis TFIAM-scenarios (Mike Holland, preliminary results) (mortality effects only)





- In co-operation with the Working Group on Effects
- Joint background report to the revised Gothenburg Protocol
- Including indicators as mentioned in Annex 1 and Cost-benefit analysis

Eutrophication



#### ICP M&M:

#### Indicators for risk and species occurrence tell the same story

Indicator of risk: AAE - Nitrogen



Indicator of : loss of biodiversity

INERIS - EDEN- 15/02/2010 - Expost-pres2011-0





The magnitude of the impact is expected to decrease

The areas (intensely) impacted are reduced

The risk to food production continues to be of concern in the future, including northern Europe



Global wheat production: -15% (2000) .. -25% (2030) ~10% reduction of carbon sequestration



**SO**<sub>2</sub>:

FGD for power plants in non-EU

Low S coal in domestic sector in new EU Member States

NO<sub>x</sub>:

SCR for power plants in non-EU

 $\rm NO_x$  controls in some industrial sectors (e.g., cement) (EU and non-EU) PM2.5:

Dust control for iron & steel industry in non-EU

Agricultural waste burning (EU and non-EU)

BC  $\rightarrow$  wood burning + diesel particle traps

 $NH_3$ :

Measures for cattle, pig and poultry farms Cattle = 50% NH<sub>3</sub> emissions!

Substitution of urea fertilizer

Agricultural waste burning (EU and non-EU)

VOC:

Additional measures for sectors falling under the Solvents Directive Agricultural waste burning (EU and non-EU)



- Current EU-regulation covers ~ 50% of the emissions of NH3, VOC, PM2.5 and BC; 75% of the NOx-emissions and ~90% of the SO2emissions.
- Challenges: agricultural waste burning, domestic wood burning, off-road vehicles (>50% reduction potential of PM2.5, BC, VOC).
- ELVs and national emission ceilings are not automatically linked: no or less strict ELVs would imply larger national responsibilities in meeting the ceilings



- Check feasibility based on national data
- (European) Russia or "PEMA"
- Fuel sold / fuel used
- Real life vehicle emissions included; will Euro-6 deliver?
- Some sources not included: e.g. NOx from agricultural soil, VOC from crops → flexibility needed!
- PM2.5/BC emission sources probably lacking and emission factors uncertain
- Further sensitivity analysis?
- Long term objectives

• ...



## 40<sup>th</sup> meeting TFIAM

## 18-21 May Oslo (Including ½ day NEBEI)

## Focus on:

Feasibility emission ceilings based on national data
Preparation TFIAM/WGE report



# **Time schedule**

| TFIAM                            | WGSR                         |  |  |  |
|----------------------------------|------------------------------|--|--|--|
| <u>2010</u>                      | <u>2010</u>                  |  |  |  |
| Feb: Baseline proposal           | Apr: Baseline accepted       |  |  |  |
| May: Analyses of targets options | Sept: Guidance on targets    |  |  |  |
| Nov: Sensitivity analysis        | Dec(EB): Guidance on targets |  |  |  |
|                                  |                              |  |  |  |
| 2011                             | <u>2011</u>                  |  |  |  |
| Jan/Feb: Scenario runs           | April: Ambition level        |  |  |  |
| May: Final runs                  | Sept: Final Protocol         |  |  |  |
| Oct: Report                      | Dec(EB): Protocol adopted    |  |  |  |