EU provisional position based on ECE/EB.AIR/WG.2009/21 as amended by
ECE/EB.AIR/WG. $5 / 2011 / 2$. Strikeout means provisions proposed to be deleted and bold
underlined proposed amendment to text. underlined proposed amendment to text.

Annex VII

LIMIT VALUES FOR EMISSIONS OF PARTICULATE MATTER DUST FROM STATIONARY SOURCES

1. Section A applies to Parties other than Canada and the United States of America, section B applies to Canada and section C applies to the United States of America.

A. Parties other than Canada and the United States of America

2. For the purpose of section Λ-this section, "emission limit value" (ELV) means the quantity of a solid substance dust contained in the waste gases from an installation that is not to be exceeded. Unless otherwise specified, it shall be calculated in terms of mass of pollutant per volume of the waste gases (expressed as $\mathrm{mg} / \mathrm{m} 3$), assuming standard conditions for temperature and pressure for dry gas (volume at $273.15 \mathrm{~K}, 101.3 \mathrm{kPa}$). With regard to the oxygen content of exhaust waste gas, the values given in the tables below for each source category shall apply. Dilution for the purpose of lowering concentrations of pollutants in waste gases is not permitted. In the context of this protocol, dust and TSP have the same meaning. As can be seen from table 8 in the guidance document on general issues, abatement techniques for dust in general provide also a high removal efficiency for PM2.5 and PM10. Start-up, shutdown and maintenance of equipment are excluded.
3. Emissions shall be monitored $\mathbf{1}$ in all cases via measurements or through calculations achieving at least the same accuracy. Compliance with limit values shall be verified through The methods of verifieation can inelude continuous or discontinuous measurements, type approval, or any other technically sound method. In case of continuous measurements, compliance with the
 not exceed the emission limit values. In case of discontinuous measurements or other appropriate determination procedures, compliance with the emission limit value standards is achieved if the mean value based on an appropriate number of measurements under representative conditions does

[^0]not exceed the value of the emission standard. The inaccuracy of the continuous and diseontinuousmeasurement methods may be taken into account for verification purposes.
4. Sampling and analysis Monitoring of relevant polluting substances and measurements of process parameters, as well as the quality assurance of automated measuring systems and the reference measurement methods to calibrate those systems shall be carried out in accordance with CEN standards. If CEN standards are not available, ISO standards, national or international standards, which will ensure the provision of data of an equivalent scientific quality, shall apply.
5. Special provisions for combustion plants referred to in paragraph 7 with a rated thermat imput exceeding 50 MWth and for combustion plants when combined to acommon stack with a total rated input exceeding $50 \mathrm{MW} t \mathrm{~h}$:
5.1 The competent authority may grant derogation from the obligation to comply with the emission limit values provided for in paragraph 7 in the following cases:
[a) for combustion plants fonly/mainly] normally using gaseous fuel who have to resort exceptionally to the use of other fuels because of a sudden interruption in the supply of gas and for this reason would need to be equipped with a waste gas purification facility]
[b) for existing combustion plants not operated more than XXX $17 \mathbf{5 0 0}$ operating hours, starting from DATE 1 January 2016 and ending no later than 31 December 2023DATE.
5.2 Where a combustion plant is extended by at least 50 MW , the emission limit value specified in paragraph 7 for new installations shall apply to the extensional part and to the plant affected by the change.
5.3 Parties shall ensure that provisions are made in the permits for procedures relating to malfunction or breakdown of the abatement equipment.
5.4 In the case of a multi-fuel firing combustion plant involving the simultaneous use of two or more fuels, the competent authority shall determine the emission limit value as the weighted average of the emission limit values for the individual fuels, on the basis of the thermal input delivered by each fuel.provide rules for setting the emission limit values.
6. Mineral oil refineries complying with the overall dust limit value set in table 1 may be exempted from compliance with the individual limit values provided in this annex. Following alternative bubble dust limit value may be used, referring to the sum of the emissions from all combustion plants and process installations expressed as an average concentration and at a reference oxygen content of 3%.

Table 1. Suggested options for Limit values for particulate matter emissions released fromrefineries using the bubble concept

Emission source	ELV for dust $\left[\mathbf{m g} / \mathbf{N m}^{3}\right]$

	Option 1 $^{1 /}$	Option 2 17	Option 3 17
Mineral oil refinery	30	$\underline{50}$	100

7. Combustion plants (beilers and process heaters) with a rated thermal input exceeding 50 MWth ${ }^{2}$ or combustion plants when combined to a common stack with a total rated input exceeding 50 MWth:

Table 2. Suggested options for Limit values for dust emissions released from boilers andprocess heaterscombustion plants ${ }^{\text {a/ }}$

Fuel type	Thermal input [MWth]	ELV for dust [mg/Nm ${ }^{\mathbf{3}}{ }^{\text {b/ }}$		
		Option $1^{1 /}$	Option $2^{1 /}$	Option $3^{1 /}$
Solid fuels	50-100	New plants: 10 (coal, lignite) 10 (biomass, peat)	New plants: 20 (coal, lignite and other solid fuels) 20 (biomass, peat)	New plants: 50 (coal, lignite) 50 (biomass, peat)
		Existing plants: 15 (coal, lignite) 15 (biomass, peat)	Existing plants: 30 (coal, lignite and other solid fuels) 30 (biomass, peat)	Existing plants: 50 (coal, lignite) 50 (biomass, peat)
	100-300	New plants: 10 (coal, lignite) 10 (biomass, peat)	New plants: 20 (coal, lignite and other solid fuels) 20 (biomass, peat)	New plants: 30 (coal, lignite) 30 (biomass, peat)
		Existing plants: 15 (coal, lignite) 10 (biomass, peat)	Existing plants: 25 (coal, lignite and other solid fuels) 20 (biomass, peat)	Existing plants: 50 (coal, lignite) 50 (biomass, peat)
	>300	New plants: 10 (coal, lignite) 10 (biomass, peat)	New plants: 10 (coal, lignite and other solid fuels) 20 (biomass, peat)	New plants: 30 (coal, lignite) 30 (biomass, peat)

[^1]| | | Existing plants:
 10 (eoal, lignite)
 10 (biomass, peat) | Existing plants:
 20 (coal, lignite and other solid fuels) 20 (biomass, peat) | Existing plants:
 50 (coal, lignite)
 50 (biomass, peat) |
| :---: | :---: | :---: | :---: | :---: |
| Liquid fuels | | New plants: 10 | New plants:
 $\underline{20}$ | New plants: 50 |
| | 50-100 | Existing plants: 15 | Existing plants:
 30 (in general) | Existing plants:
 $\frac{50 \text { for the firing of }}{\text { distillation and }}$
 conversion residues from
 the refining of crude oil
 for own consumption in
 combustion plants |
| | | New plants:
 10 | New plants: $\underline{20}$ | New plants: 30 |
| | 100-300 | Existing plants: 15 | Existing plants:
 25 (in general) | $\begin{gathered} \text { Existing plants: } \\ 50 \text { for the firing of } \\ \begin{array}{c} \text { distillation and } \\ \text { conversion residues from } \end{array} \\ \text { the refining of crude oil } \\ \text { for own consumption in } \\ \hline \text { combustion plants } \end{gathered}$ |
| | | New plants:
 5 | New plants: $\underline{10}$ | New plants:
 30 |
| | >300 | Existing plants: 10 | Existing plants:
 $\underline{20 \text { (in general) }}$ | Existing plants:
 $\frac{50 \text { for the firing of }}{$ distillation and }
 conversion residues from
 fhe refining of crude oil
 combustion plants |
| Natural gas | >50 | 5 | 5 | 5 |
| Other gases | >50 | | $\underline{10}$ $\underline{30 \text { for gases }}$ produced by the steel | |

			industry which can be used elsewhere	
Combustion plants in refineries using distillation and conversion residues for own use	>50	10	New plants $\underline{20}$	50
				Existing plants 50

a/ In particular, the limit values shall not apply to:
Plant where the combustion process is an integrated part of a specific production, for example the coke oven used in the Iron and Steel industry and glass and ceramics production plants; - Plant in which the products of combustion are used for direct heating, drying, or any other treatment of objects or materials;

- Post-combustion plants designed to purify the waste gases by combustion which are not operated as independent combustion plants;
- \quad Facilities for the regeneration of catalytic cracking catalysts;
- \quad Facilities for the conversion of hydrogen sulphide into sulphur;
- Reactors used in the chemical industry;
- Coke battery furnaces;
- Cowpers;
- \quad [Recovery boilers for black liquor within installations for the production of pulp \ddagger
- Waste incinerators; and
- Plant powered by diesel, petrol or gas engines or by combustion turbines, irrespective of the fuel used.
b/ These values do not apply to combustion plants running less than 500 hours a year. The O_{2} reference content is 6% for solid fuels and 3% for ethersliquid and gaseous fuels

8. Mineral oil and gas refineries

Table 3. Limit values for dust emissions released from mineral oil and gas refineries

Emission source	ELV for dust [mg/Nm³]		
	Option 1/ $^{1 /}$	Option 2 $^{1 /}$	Option 3 $^{1 /}$
FCC regenerators	20	$\underline{\mathbf{5 0}}$	200

Oxygen reference: dry basis, 3% for combustion, 15% for gas turbines.
9. Cement clinker production:

Table 4. Limit values for dust emissions released from cement production ${ }^{\text {a/ }}$

	ELV for dust [mg/Am ${ }^{3}$]		
	Option 1 $^{1 /}$	Option 2 $^{1 /}$	Option 3 $^{1 /}$
Cement installations kilns, $\underline{\text { mills and clinker coolers }}$	15	$\underline{20}$	50

a/ Installations for the production of cement clinker in rotary kilns with a capacity >500
$\mathrm{Mg} /$ day or in other furnaces with a capacity $>50 \mathrm{Mg} /$ day. The reference oxygen content is 10%.
10. Lime production:

Table 5. Limit values for dust emissions released from lime production ${ }^{\mathbf{a} /}$

	ELV for dust [mg/Am³]		
	Option 1 ${ }^{1 /}$	Option 2 $^{1 /}$	Option 3 $^{1 /}$
	15	$\underline{20}$	30

${ }^{\text {a/ }}$ Installations for the production of lime with a capacity of 50 tonnes/day or more. This includes lime kilns integrated in other industrial processes, with the exception of the pulp industry (see table 10). The reference oxygen content is 11%.

11. Production and processing of metals:

Table 6. Limit values for dust emissions released from primary iron and steel production

Activity and capacity threshold	ELV for dust[mg/Nm³]		
	Option $1^{1 /}$	Option ${ }^{1 /}$	Option $3^{1 / 6 /}$
Sinter plant $(\geqslant 150 \text { t/day })$	$15^{\text {a/ }}$	$50^{\text {a/ }}$	50^{-}
Pelletization plant (>150 t/day)	$5^{2 /}$	$10^{-\pi / 20 ~ f o r ~}$ crushing, grinding and drying 15 for all other process steps	25
Blast furnace: Hot stoves (>2.5 t/hour)	5^{24}	$10^{\text {a/ }}$	50
Basic oxygen steelmaking and casting (>2.5 t/hour)	10^{-4}	$30^{\#+}$	50
Electric steelmaking and casting (>2.5 t/hour)	10 (existing) 5 (new)	$\begin{aligned} & \frac{15 \text { (existing) }}{5 \text { (new) }} \end{aligned}$	20

a/ As an exemption to paragraph 3, these ELVs should be considered as monthly averages b/ Based on the heavy metal protocol based on a daily average

Table 7. Limit values for dust emissions released from iron foundries

Activity and capacity threshold	ELV for dust [mg/AN3 ${ }^{3}$]		
	Option 1 $^{1 /}$	Option 2 $^{1 /}$	Option 3 $^{1 / \mathbf{b}}$
Iron foundries (>20 t/day): $-\quad$all furnaces (cupola, induction, rotary) $-\quad$ all mouldings (lost, permanent)	10	$\underline{20}$	50
Hot and cold rolling	10	$\underline{\mathbf{5 0} \text { where a bag }}$ filter cannot be	30

		$\frac{\text { applied due to the }}{\text { presence of wet }}$ fumes

Table 8. Limit values for dust emissions released from non ferrous metals production and processing

a/ The choice of abatement technique depends on local conditions, cross media effects, geographical loeation and technieal characteristies of the plant. Socio economies need also to beconsidered. The preferred technique for dust abatement is the use of a fabric filter or a ceramic filter. Electrostatic precipitators should be used for gase containing too much moist, for hot gases, or when the PM is too sticky. Serubbers should be used as the temperature or the nature of thegases precludes the use of other techniques, or when gaseous elements or acids have to be removed simultaneously with dust.
12. Glass production:

Table 9. Limit values for dust emissions released from glass production ${ }^{\mathbf{a} /}$

	ELV for dust [mg/Nm³]		
	Option 1 $^{1 /}$	Option 2 $^{1 /}$	Option 3 $^{1 /}$
	10	$\underline{3020}$	50
Existing installations	15	$\underline{30}$	50

a/ Installations for the production of glass or glass fibres with a capacity of 20 tonnes/day or more. For combustion gases: Concentrations refer to dry waste gases at 8% oxygen by volume (continuous melting), 13% oxygen by volume (discontinuous melting).
13. Pulp production:

Table 10. Limit values for dust emissions released from pulp production

	ELV for dust [mg/ $\mathbf{N m}^{3}$] (annual averages)		
	Option $\mathbf{1}^{\text {H }}$	Option $2^{1 /}$	Option $3^{\text {¹ }}$
Auxiliary boiler	25	40 when firing liguid fuels (at 3\% oxygen content) 30 when firing solid fuels (at 6% oxygen content)	40
Recovery boiler and lime kiln	40	$\underline{50}$	80

14. Waste incineration:

Table 11. Limit values for dust emissions released from waste incineration

	ELV for dust [mg/Am3$]$		
	Option 1 ${ }^{1 /}$	Option 2 $^{1 /}$	Option 3 $^{1 /}$
Municipal waste incineration plants (> 3 tonnes/hour)	3	5	$\underline{10}$
Hazardous and medical waste incineration (> tonne/hour)	3	5	$\underline{10}$

Oxygen reference: dry basis, 11%.
15. Titanium dioxide production:

Table 12. Limit values for dust emissions released from titanium dioxide production

	ELV for dust [mg/Nm $\left.{ }^{3}\right]$		
	Option 1 $^{1 /}$	Option 2 $^{1 /}$	Option 3 $^{1 /}$
Sulphate process, total emission	12	20	$\underline{50}$
Chloride process, total emission	20	35	$\underline{50}$

For minor emission sources within an installation, an emission limit value of $150 \mathrm{mg} / \mathrm{m}^{3} \mathrm{may}$ be applied
[The EU proposes to move paragraph 16 into a separate Annex or separate part of this annex, with a non-mandatory character and to select one option, which could be in the ambitious range (1 to 2) as a recommendation.]
16. Small combustion installations with a rated thermal input < 50 MWth:

1. Small combustion installations with a rated thermal input < [300] [500] kW:
(a) Emissions from new residential combustion stoves and boilers with a rated thermal input < [300] [500] kWth can be reduced by the application of:
(i) Product standards as described in CEN standards (e.g., EN 303-5) and equivalent product standards in the United States and Canada. Countries applying such product standards may define additional national requirements taking into account in particular the contribution of emissions of condensable organic compounds to the formation of ambient particulate matter. Table 13 is recommending options for additional ELVs for dust for wood combustion appliances;
(ii) Ecolabels specifying performance criteria that are typically stricter than the minimum efficiency requirements of the EN product standards or national regulations.

Table 13: Limit values for dust emissions released from new small wood combustion installations with a rated thermal input < [300] [500] kW th to be used with product standards. (O2 reference content: 13\%).

$\left.\begin{array}{l}\text { Particulate matter } \\ \text { concentration Dust (mg/Nm }\end{array}\right)$	Option 1	Option 2	Option 3
Open / closed fireplaces	40	75	110
Wood stoves	40	75	110
Log wood boilers (with heat storage tank)	20	40	110
Pellet stoves and boilers	20	40	110
Automatic combustion plants	20	50	110

(b) Emissions from existing residential combustion stoves and boilers can be reduced by the following primary measures: ${ }^{3}$

[^2](i) By public information and awareness-raising programmes regarding:
a. The proper operation of stoves and boilers;
b. The use of untreated wood only;
c. The correct seasoning of wood for moisture content;
(ii) By establishing a programme to promote the replacement of the oldest existing boilers and stoves by modern appliances; or
(iii) By establishing an obligation to exchange or retrofit old appliances.
2. Combustion installations with a rated thermal input [50] [70] [100] kWth-1 MWth

Table 14: Limit values for dust emissions released from boilers [and process heaters] with a rated thermal input of [50] [70] [100] kWth-1 MWth. (O2 reference content: wood, other solid biomass and peat: 13%; Coal, lignite and other fossil solid fuels: 6\%)

Particulate ma concentration	ter Dust (mg/Am ${ }^{3}$)	Option 1	Option 2	Option 3
Solid fuels [50][70][100]-	New installations	30	50	150
$\begin{aligned} & 500 \\ & \text { kWth } \end{aligned}$	Existing installations	100	150	150
	New installations	20	50	150
500 kW th-1 MWth	Existing installations	30	150	150

3. Combustion installations with a rated thermal input > 1-50 MWth

Table 15: Limit values for dust emissions released from boilers [and process heaters] with a rated thermal input of $\mathbf{1}$ MWth- 50 MWth ($\mathbf{O} 2$ reference content: Wood, other solid biomass and peat: $\mathbf{1 1 \%}$; Coal, lignite and other fossil solid fuels: $\mathbf{6 \%}$; Liquid fuels, including liquid biofuels: 3\%)

Particulate matter Dust concentration $\left(\mathbf{m g} / \mathbf{N m}^{\mathbf{3}}\right)$	Option 1	Option 2	Option 3	
Solid fuels	New installations	10	20	150

$>1-5$ MWth	Existing installations	20	50	150
Solid fuels				
$>5-50$ MW	New installations	10	20	50
	Existing installations	20	30	50
Liquid fuels $>1-5 ~ M W t h ~$	New installations	10	20	150

[^0]: ${ }^{1}$ Monitoring is to be understood as an overall activity, comprising measuring or calculating of emissions, massbalancing, etc. It can be carried out continuously or discontinuously.

[^1]: ${ }^{2}$ The rated thermal input of the combustion plant is calculated as the sum of the input of all units connected to a common stack. Individual eombustion plants units below 15 MW th shall not be considered when calculatingtoealeulate the total rated input.

[^2]: ${ }^{3}$ Paragraph 16. A. 2 (a) (c) has a recommendatory character and might be deferred to the GuidanceDocument.

