

CRIRSCO-UNFC 2009 mapping Solid Minerals Case Studies

Stephen Henley

Director, Resources Computing International Ltd, UK, CRIRSCO representative for the Pan-European Reserves & Resources Reporting Committee (PERC)

Expert Group on Resource Classification, Fifth Session Geneva, 29 April – 2 May 2014

◎ \$: \$ \$ 11 (* ^ # @ \$: \$ \$ 11

Terms of Reference: summary

Pilot studies on CRIRSCO to UNFC-2009 mapping

- How well does it work in practice ?
- Areas for improvement in framework, specifications, and bridging ?

– Guidelines and recommendations for users ?

ان الا من الحم الأركان الذي الحم الأركان الأركان الحم الأركان الأركان الأركان المركان المركان المركان المركان ا

The UNFC-2009 classification

CRIRSCO Template

Note – this report includes some material based on the updated CRIRSCO Template (Nov.2013).

Significant changes include

- Standardised definitions
- Effective Date, Reference Point added
- Exploration Target defined
- Feasibility Study etc. defined

Scope of Case Studies

Coal Reserves & Resources Gold and Uranium Reserves & Resources

3) Polymetallic Reserves & Resources

4) Industrial/Construction Minerals Data5) Exploration Project Data

			Reserves		Marketable reserves		Marketable coal quality		Avg % yield to	Interest	Rio Tinto share	
	Type of mine(a)	Coal type (f)	Proved at end 2012	Probable at end 2012	Proved at end 2012	Probable at end 2012	Calorific value MJ/kg	Sulphur content %	give mktable reserves	%	Marketable reserves	
COAL (h)			millions of tonnes	millions of tonnes	millions of tonnes	millions of tonnes	(g)	(g)			millions of tonnes	
Reserves at opera	ating mine	S										
Bengalla	O/C	SC	161	10	121	7.2	27.86	0.48	75	32	41	
Blair Athol (i)	O/C	SC				71.2						
Clermont	O/C	SC	168	4.6	160	4.2	27.9	0.33	96	50.1	82	
Hail Creek	O/C	MC	84	44	43	23	32.2	0.35	52	82	54	
Hunter Valley Operations	O/C	SC+MC	270	47	184	33	28.99	0.58	68	80	173	
Kestrel Coal	U/G	MC	45	95	37	79	31.6	0.59	83	80	93	
Mount Thorley Operations	O/C	SC+MC	30	7.4	20	4.7	29.8	0.45	66	64	16	
Warkworth	O/C	SC+MC	217	155	141	101	29.8	0.45	65	44.5	108	
Other undevelop	ed reserve	es (k)										
Mount Pleasant	O/C	SC		399		326	26.92	0.48	82	80	261	

▲
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

				Reserve	s	Marketable	e reserves	Marketab quali	le coal ty	Avg % yield to	Interest	Rio Tinto
	Whi	ch t	o use ?								6	Marketable reserves
COAL (h	Diffe	eren	t Refer	ence Po	ints							millions of tonnes
Reserves Bengalla Blair Ath	In C	RIRS	CO rep	orts, <u>M</u>	arke	table R	eserve	<u>s estir</u>	nates	s are	32	41
Clermont	opti	ona	,								50.1	82
Hall Cree Hunter V	But	<u>Res</u>	<mark>erves</mark> e	estimate	<mark>s</mark> mເ	<mark>ust alwa</mark>	ays be o	quoted	b		82	54 173
Operation Kestrel C	The	refo	re whe	<mark>never d</mark>	ata a	re likel	<mark>y to be</mark>	aggre	gated	d, use	80	93
Mount TI Operation	the	Rese	e <mark>rves</mark> fi	igures							64	16
Warkwor Other un	develope	d reserv	ves (k)								44.5	108
Mount Pl	easant	O/C	SC		399		326	26.92	0.48	82	80	261
	4											

· ♣ ≶ \$: ♠ ¶ 11 @ ↑ ♣ ≶ \$: ♠ ¶ 11 @

			T-LT-QT		4						
			Rese	erves	Marketab	le reserves	Marketa qua	able coal ality	Avg % yield to	Interest	Rio Tinto
	Type of mine(a)	Coal type (f)	Proved at end 2012	Probable at end 2012	Proved at end 2012	Probable at end 2012	Calorific value MJ/kg	Sulphur content %	give mktable reserves	%	Marketable reserves
COAL (h)			millions of tonnes	millions of tonnes	millions of tonnes	millions of tonnes	(g)	(g)			millions of tonnes
Reserves at oper	ating mine	es									
Bengalla	O/C	SC	161	10	121	7.2	27.86	0.48	75	32	41
Blair Athol (i)	O/C	SC				71.2					
Clermont	O/C	SC	168	4.6	160	4.2	27.9	0.33	96	50.1	82
Hail Creek	O/C	MC	84	44	43	23	32.2	0.35	52	82	54
Hunter Valley Operations	O/C	SC+MC	270	47	184	33	28.99	0.58	68	80	173
Kestrel Coal	U/G	MC	45	95	37	79	31.6	0.59	83	80	93
Mount Thorley Operations	O/C	SC+MC	30	7.4	20	4.7	29.8	0.45	66	64	16
Warkworth	O/C	SC+MC	217	155	141	101	29.8	0.45	65	44.5	108
Other undevelop	ed reserve	es (k)									
Mount Pleasant	O/C	SC		399		326	26.92	0.48	82	80	261

			Res	erves	Marketab	le reserves	Marketa qua	able coal ality	Avg % yield to	Interest	Rio Tinto share
	Type of mine(a)	Coal type (f)	Proved at end 2012	Probable at end 2012	Proved at end 2012	Probable at end 2012	Calorific value MJ/kg	Sulphur content %	give mktable reserves	%	Marketable reserves
COAL (h)			millions of tonnes	millions of tonnes	millions of tonnes	millions of tonnes	(g)	(g)			millions of tonnes
Other undevelop	ed reserve	es (k)									
Mount Pleasant	O/C	SC		399		326	26.92	0.48	82	80	261

(k) The term "other undeveloped reserves" is used here to describe material that is economically viable on the basis of technical and economic studies but for which mining and processing permits may have yet to be requested or obtained. There is a reasonable, but not absolute, certainty that the necessary permits will be issued and that mining can proceed when required.

			Res	erves	Marketab	le reserves	Marketa qua	able coal ality	Avg % yield to	Interest	Rio Tinto
	Type of mine(a)	Coal type (f)	Proved at end 2012	Probable at end 2012	Proved at end 2012	Probable at end 2012	Calorific value MJ/kg	Sulphur content %	give mktable reserves	%	Marketable reserves
COAL (h)			millions of tonnes	millions of tonnes	millions of tonnes	millions of tonnes	(g)	(g)			millions of tonnes
Other undevelop	<mark>ed reserve</mark>	s (k)									
Mount Pleasant	O/C	SC		399		326	26.92	0.48	82	80	261

(k) The term "other undeveloped reserves" is used here to describe material that is economically viable on the basis of technical and economic studies but for which mining and processing permits may have yet to be requested or obtained. There is a reasonable, but not absolute, certainty that the necessary permits will be issued and that mining can proceed when required.

E1.1-F1.3-G2

🔊 🔃 🕗 🔬 🖑 🚷

		Coal type (a)	Cor	l resources at and ?	012	Rio Tinto
		Coal type (e)		al lesources at enu 2	012	Interest %
			Measured	Indicated	Inferred	
COAL (f)			millions of tonnes	millions of tonnes	millions of tonnes	
Rio Tinto Coal Australia						
Bengalla (h)	O/C + U/G	SC + MC	68	112	66	32
Blair Athol (i)	O/C	SC	10	0.2		71.2
Clermont	O/C	SC	11		3.7	50.1
Hail Creek	O/C	MC	60	79	36	82
Hunter Valley Operations	O/C + U/G	SC + MC	201	428	368	80
Kestrel West	O/C	SC		106	33	80
Lake Elphinstone	O/C	MC		120	42	82
Mount Pleasant	O/C + U/G	SC + MC	162	245	205	80
Mount Thorley Operations (j)	O/C + U/G	SC + MC		19	94	64
Oaklands	O/C	SC	596	584	90	80
Valeria	O/C	SC		698	64	71.2
Warkworth	O/C + U/G	SC + MC	6.2	125	343	44.5
Winchester South	O/C	MC		17	175	75

		Coal type (e)	E2-F2-G1	oal	E2-F2-G2	20	E2-F2-G3	Rio Tinto Interest %
			Measured		Indicated		Inferred	
COAL (f)			millions of tonne	s t	millions of tonne	es n	nillions of tonnes	
Rio Tinto Coal Australia								
Bengalla (h)	O/C + U/G	SC + MC	6	8	11	2	66	32
Blair Athol (i)	O/C	SC	1	0	0.	2		71.2
Clermont	O/C	SC	1	1			3.7	50.1
Hail Creek	O/C	MC	6	0	7	9	36	82
Hunter Valley Operations	O/C + U/G	SC + MC	20	1	42	8	368	80
Kestrel West	O/C	SC			10	6	33	80
Lake Elphinstone	O/C	MC			12	0	42	82
Mount Pleasant	O/C + U/G	SC + MC	16	2	24	5	205	80
Mount Thorley Operations (j)	O/C + U/G	SC + MC			1	9	94	64
Oaklands	O/C	SC	59	6	58	4	90	80
Valeria	O/C	SC			69	8	64	71.2
Warkworth	O/C + U/G	SC + MC	6.	2	12	5	343	44.5
Winchester South	O/C	MC			1	7	175	75

CC Rie	AL (f) Tinto Coal Australia		Coal type (e)	E2-F2-G1 Measured millions of tonne	oal E2-F2-C Indicate es millions of t	52 20 E2-F2 ed Infer tonnes millions c	-G3 Rio Tin Interes red of tonnes	nto st %
Be	in Athel(i)	-O/C + U/C	G SC + MC			112	66	32
	ermont	0/C 0/C	SC	I	0	0.2	3.7	50.1
Ha Hu Ke La Ma Oa Va Wa Wa	Note (i): All r converted to November 2 - suggests th resources to	remain resour 012. at it m sub-cl	ing reser rces follo ight be a asses. B	rves at Bl wing the ppropria ut we cai	<i>air Atho</i> <i>cessati</i> ite to all n only d	I have be on of mir ocate the o this if v	en ning in ese ve	82 80 80 82 80 64 80 71.2 44.5 75
- A	know the rea (F axis) or so the full text o	ason fo cio-eco of the	or cessati onomic (report.	ion of mi E axis). T	ning - w his shou	hether te Ild be fou	echnical and in	

	Type of	Proved ore reserves at end 2012		Probable or end	ereserves at 2012	Average mill	Rio 7	Finto share	
	mine	Tonnage	Grade	Tonnage	Grade	recovery	In	terest %	Recoverable
	(a)					%			metal
GOLD		millions	grammes	millions	grammes				millions of
		of tonnes	per tonne	of tonnes	per tonne				ounces
Reserves at operating mines									
Bingham Canyon (US)									
– open pit (l)	O/P	417	0.21	287	0.18		64	100	2.875
– stockpiles		40	0.14	41	0.14		64	100	0.232
Grasberg (Indonesia)	OP+UG	800	1.03	1624	0.74		68	(q)	12.227
Northparkes (Australia)									
 open pit and stockpiles 		8.2	0.24				67	80	0.035
– underground	U/G			66	0.28		68	80	0.328
Oyu Tolgoi (Mongolia)									
– South Oyu open pit (r) (y)	O/P	426	0.42	614	0.24		74	33.5	2.581
– South Oyu stockpiles (s) (r)		9	0.33				74	33.5	0.024
Reserves at development proje	ects								
Eagle (US) (u)	U/G			5.2	0.25		55	100	0.023
Oyu Tolgoi (Mongolia)									
– Hugo Dummett N (v)	U/G			460	0.37		83	33.5	1.544
– Hugo Dummett N Ext(w)	U/G			31	0.62		83	30.5	0.159

E1-E1-G1

Rio Tinto 2012: gold reserves

						_			
	Type of	Proved ore end 2	reserves at 2012	Probable or end	ereserves at 2012	Average mill	Rio Tir	nto share	
	mine	Tonnage	Grade	Tonnage	Grade	recovery	Inter	rest %	Recoverable
	(a)					%			metal
GOLD		millions	grammes	millions	grammes				millions of
		of tonnes	per tonne	of tonnes	per tonne				ounces
Reserves at operating mines			-		-				
Bingham Canyon (US)									
– open pit (l)	O/P	417	0.21	287	0.18		64	100	2.875
– stockpiles		40	0.14	41	0.14		64	100	0.232
Grasberg (Indonesia)	OP+UG	800	1.03	1624	0.74		68 ((q)	12.227
Northparkes (Australia)									
 open pit and stockpiles 		8.2	0.24				67	80	0.035
– underground	U/G			66	0.28		68	80	0.328
Dyu Tolgoi (Mongolia)									
– South Oyu open pit (r) (y)	O/P	426	0.42	614	0.24		74	33.5	2.581
– South Oyu stockpiles (s) (r)		9	0.33				74	33.5	0.024
Reserves at development proj	ects								
Eagle (US) (u)	U/G			5.2	0.25		55	100	0.023
Dyu Tolgoi (Mongolia)									
- Hugo Dummett N (v)	U/G			460	0.37		83	33.5	1.544
- Hugo Dummett N Ext(w)	U/G			31	0.62		83	30.5	0.159

E1-F1-G2

		E1-F1	- G1	E1-F	1-G2					
	Type	Proved ore	reserves at	Probable or	rereserves at	Average	Rio T	into share		
	mine	Tonnage	Grade	Tonnage	Grade	recovery	Int	erest %	Recoverable	
	(a)					%			metal	
GOLD		millions of tonnes	grammes	millions of toppes	grammes				millions of	
Reserves at operating mines			1		Prot tourne					
Bingham Canyon (US)										
– open pit (l)	O/P	417	0.21	287	0.18		64	100	2.875	
– stockpiles	0.5.110	40	0.14	41	0.14		64	100	0.232	
Grasberg (Indonesia)	OP+UG	800	1.03	1624	0.74		68	(q)	12.227	
Northparkes (Australia)		0.0	0.24				67	80	0.025	
- open pit and stockpites	U/G	0.2	0.24				07	80	0.055	a
Ovu Tolgoi (Mongolia)	0/0	Recent	os at ()nerati	ing Min	۵c				
- South Oyu open pit (r) (y)	O/P			perati		CS				
– South Oyu stockpiles (s) (r)		= "On I	Produc	ction"						
Reserves at development proje	ects						_			
Eagle (US) (u)	U/G	higher	sub-cl	asses	E1.1-F1	<mark>.1-G1</mark>	and	E1.1-	F1.1-G2	
Oyu Tolgoi (Mongolia)	L									
– Hugo Dummett N (v)	U/G			460	0.37		83	33.5	1.544	
– Hugo Dummett N Ext(w)	U/G			31	0.62		83	30.5	0.159	
	•		~ {			and the				A
	6				and the second	(HAR)		0-0	y nhill	5

		E1-F1	- G1	E1-F	1-G2					
	Type of	Proved ore end 2	reserves at 2012	Probable of end	rereserves a 2012	t Average mill	Rio Tinto	share		
	mine (a)	Tonnage	Grade	Tonnage	Grade	recovery %	Interest	: %	Recoverable metal	
GOLD	(4)	millions	grammes	millions of toppes	grammes				millions of	
Reserves at operating mines Bingham Canyon (US)	0.7	Reserve	es at d	evelop	ment	<mark>: project</mark>	S			
- open pit (1) - stockpiles	O/P	= "Justi	<mark>fied fo</mark>	r Deve	elopm	ent"				
Northparkes (Australia) – open pit and stockpiles	OP+U	Sub-cla	sses <mark>E</mark>	1.1-F1	<mark>.2-G1</mark>	and E1.	1-F1.2	2-G2		
– underground Ovu Tolgoi (Mongolia)	U/G			66	0.	28	68	80	0.328	
 South Oyu open pit (r) (y) South Oyu stockpiles (s) (r) 	O/P	426 9	0.42 0.33	614	0.	24	74 74	33.5 33.5	2.581 0.024	_
Reserves at development proje	ects									
Eagle (US) (u)	U/G			5.2	0.	25	55	100	0.023	
Oyu Tolgoi (Mongolia)										
– Hugo Dummett N (v)	U/G			460	0.	37	83	33.5	1.544	
– Hugo Dummett N Ext(w)	U/G			31	0.	62	83	30.5	0.159	

GOLD

Rio Tinto 2012: gold reserves

	Type of mine (a)	E1-F1 Proved ore end 2 Tonnage	- G1 reserves at 2012 Grade	E1-F Probable on end Tonnage	1-G2 rereserves at 2012 Grade	Average mill recovery %	Rio Tinto shar Interest %	e Recoverable metal	
GOLD		millions of tonnes	grammes	millions of tonnes	grammes			millions of	
Reserves at operating mines Bingham Canyon (US) – open pit (l) – stockpiles Grasberg (Indonesia) Northparkes (Australia) – open pit and stockpiles – underground Oyu Tolgoi (Mongolia) – South Oyu open pit (r) (y) – South Oyu stockpiles (s) (r)	O/P OP+U U/G O/P	Reserve = "Justi Lower s Possibly already	es at d fied fo sub-cla y E1.1- y comn	evelop or Deve asses E -F1.3-C nitted	oment p lopme 1.1-F1 i1 and (or min	oroject nt″ . 2-G1 a E1.1-F: ning pe	s and E1.1 1.3-G2 i ⁻ rmits no	- F1.2-G2 f capital N ot obtaine	NOT ed)
Reserves at development proje	ects								
Eagle (US) (u)	U/G			5.2	0.25		55 1	00 0.023	3
Oyu Tolgoi (Mongolia) – Hugo Dummett N (v) – Hugo Dummett N Ext(w)	U/G U/G			460 31	0.37 0.62		83 3. 83 3.	3.5 1.544 0.5 0.159	1 Ə
<u>.</u>					<u>.</u>				

		E1-F1-	- G1	E1-F	1-G2				
	Туре	Proved ore	reserves at	Probable or	ereserves at	Average	Rio Tint	o share	
	of	end 2	.012	end	end 2012				
	mine	Tonnage	Grade	Tonnage	Grade	recovery	Intere	est %	Recoverable
	(a)					%			metal
GOLD		millions	grammes	millions	grammes				millions of
		of tonnes	per tonne	of tonnes	per tonne				ounces
Reserves at operating mines									
Bingham Canyon (US)									
– open pit (l)	O/P	417	0.21	287	0.18		64	100	2.875
stockpiles			0.14		0.14		64	100	0.232
Grasberg (Indonesia)	OP+UG	800	1.03	1624	0.74		68 (q)	12.227

- open - unde Oyu Tol - South - South Reserve Eagle (U Oyu Tol – Hugo

Note (q): Under the terms of a joint venture agreement between Rio Tinto and FCX, Rio Tinto is entitled to a direct 40 per cent share in reserves discovered after 31 December 1994 and it is this entitlement that is shown. This is a case where only the attributable proportion of the – Hugo I

reserves has been reported, not the total deposit

Rio Tinto 2012: gold resources

		E2-F2-G1lyMeasured resourcesngat end 2012		E2-F2-G2 Indicated resources at end 2012		E2-F2-G3 Inferred resources at end 2012			
	Likely mining							Rio Tinto Interest %	
	method	Tonnage	Grade	Tonnage	Grade	Tonnage	Grade		
GOLD	(a)	millions of tonnes	grammes per tonne	millions of tonnes	grammes per tonne	millions of tonnes	grammes per tonne		
Bingham Canyon (US)			1		I		1		
– Open Pit (l)	O/P					2.7	0.13	100	
– North Rim Skarn	U/G	1	2.1	9	1.7	10	1.5	100	
Eagle (US) (m)	U/G			0.4	0.18	0.1	0.12	100	
Grasberg (Indonesia)	OP+UG	490	0.63	1851	0.53	94	0.46	(r)	
Northparkes (Australia)	U/G	14	0.3	3.7	0.13	271	0.26	80	
Oyu Tolgoi (Mongolia)									
– Heruga ETG (s)	U/G					910	0.49	30.5	
– Heruga IVN (t)	U/G					60	0.37	33.5	
– Hugo Dummett North (u)	U/G			292	0.31	574	0.31	33.5	
– Hugo Dummett North Extension (v)	U/G			90	0.57	100	0.3	30.5	
– Hugo Dummett South (w)	U/G					490	0.09	33.5	
– South Oyu (x)	O/P	22	0.65	150	0.5	453	0.23	33.5	
Wabu (Indonesia)	O/P					44	2.47	(r)	

Rio Tinto 2012: gold resources

GOLD

Bingham Canyon (US)
– Open Pit (l)
– North Rim Skarn
Eagle (US) (m)
Grasberg (Indonesia)
Northparkes (Australia)
Oyu Tolgoi (Mongolia)
– Heruga ETG (s)
– Heruga IVN (t)
– Hugo Dummett North (u)
– Hugo Dummett North Extension (v)
– Hugo Dummett South (w)
– South Oyu (x)
Wabu (Indonesia)

	E2-F	2-G1	E2-F2	2-G2	E2-F	2-G3	
Likely mining	Measured at end	resources 2012	Indicated at end	resources 2012	Inferred at en	resources d 2012	Rio Tinto Interest %
method (a)	Tonnage millions	Grade grammes per tonne	Tonnage millions	Grade grammes	Tonnage millions	Grade grammes	
O/P U/G	1	2.1	9	1.7	2.7 19	0.13 1.5	100 100
U/G OP+UG U/G	As be	fore –	take ca	are wh	ien ¹	0.12 0.46 0.26	100 (r) 80
U/G U/G U/G	attrib than 1	utable L00%	share	is less	10 50 74	0.49 0.37 0.31	30.5 33.5 33.5
U/G U/G O/P O/P	22	0.65	150	0.57	490 453 44	0.3 0.09 0.23 2.47	30.5 33.5 33.5 (r)

● \$* **~** 7 1 *** ^ #** ● \$* **~** 7 1

Rio Tinto 2012: gold resources

			E2_E2_0	24	<u> 52 52 (</u>	27	<u>E2_E2_</u>	53	
	Note (r): Under th	e terms	of a j	oint ve	enture	agree	ment	rces	Rio Tinto
	between Rio Tinto	<mark>o and FC</mark>	X, Rio	Tinto	is enti	tled to	a	2 Frade	Interest %
GO	direct 40 per cent	ummes tonne							
Bing – Or – No Eagl Gras Nort Oyu	<i>31 December 199</i> As with the reserv	4. /es – int	erpret	tation	of the	numb	ers	$\begin{array}{c} 0.13 \\ 1.5 \\ 0.12 \\ 0.46 \\ 0.26 \end{array}$	100 100 100 (r) 80
– He – He	will often depend	on the	footno	otes!				0.49 0.37	30.5 33.5
– Hu	go Dummett North (u)	U/G			292 00	0.31	574 100	0.31	33.5
– Hu – Hu	go Dummett North Extension (V) go Dummett South (w)	U/G	22	0.65	90 150	0.57	490	0.09	33.5 22.5
Wab	u (Indonesia)	O/P		0.02	130	<u>0.9</u>	433	2.47	(r)

Rio Tinto 2012: uranium reserves

		E1-F1-	G1	E1-F1	-G2	
Uranium	Likely mining method	Proved ore reserves at end 2012		Probable ore reserves at end 2012		Rio Tinto Interest
		Tonnage	Grade	Tonnage	Grade	%
		Millions of tonnes	U ₃ O ₈ %	Millions of tonnes	U ₃ O ₈ %	
Energy Resources of Australia (Australia)						
– Ranger #3 stockpiles (oo)				7.3	0.132	68.4
Rössing (Namibia) (pp)	O/P	29	0.031	102	0.035	68.6

Rio Tinto 2012: uranium reserves

		E1-F1-	G1	E1-F1	-G2	$ \land$
Uranium	Likely mining method	Proved ore re- end 2012	serves at	Probable ore at end 2012	reserves	Rio Tinto Interest
		Tonnage	Grade	Tonnage	Grade	%
Energy Resources of Australia	tch the a	attributa	ble per	centage	agair	<mark>1</mark>
(Australia)						
– Ranger #3 stockpiles (oo)				7.3	0.132	68.4
Rössing (Namibia) (pp)	O/P	29	0.031	102	0.035	68.6

Rio Tinto 2012: uranium

Rio

%

Tinto

Interest

68.4

68.6

reserves

))); **(***)) (*))

Note (oo): Following completion of open cut mining, Ranger #3 reserves are reported as stockpiles only, E1-F1-G2 with reduced tonnes and grade. robable ore reserves t end 2012 Probably should be **E1.1-F2.2-G1** but detailed Grade onnage explanation needed from report text Millions of U_3O_8 IVITIIIOIIS OI U3U8 70 % tonnes tonnes **Energy Resources of Australia** (Australia) 0.132 - Ranger #3 stockpiles (oo) 7.3 Rössing (Namibia) (pp) 0.031 0.035O/P29 102

Rio Tinto 2012: uranium resources

		E2-F2	2-G1	E2-F2	- G2	E2-F2	2-G3	
Uranium	Likely mining method	Measured resources at end 2012		Indicated resources at end 2012		Inferred resources at end 2012		Rio Tinto interest
		Tonnage	Grade	Tonnage	Grade	Tonnage	Grade	%
		millions of tonnes	U ₃ O ₈ %	millions of tonnes	U ₃ O ₈ %	millions of tonnes	U ₃ O ₈ %	
Energy Resources of Australia (Australia)								
– Jabiluka	U/G	1.2	0.887	14	0.52	10	0.545	68.4
– Ranger#3 mine (nn)	U/G			9.5	0.325	0.6	0.383	68.4
– Ranger #3 stockpiles (oo)				69	0.043			68.4
Rössing (Namibia) (pp)	O/P	15	0.026	148	0.024	173	0.026	68.6

– Ranger#3 mine (nn)

- Ranger #3 stockpiles (00)

Rio Tinto 2012: uranium resources

0.325

0.043

9.5

69

Notes: (nn) Ranger open cut resource tonnes have decreased following the completion of open cut mining. Underground resources at a significantly higher grade are now reported. (oo) Following completion of open cut mining, Ranger stockpile resources are reported as a separate entity for the first time.

U/G

Rössing (Namibia Ranger#3 Stockpile Resources should probably be E2-F2.2-G1

Newcrest: gold and copper Example: The Telfer province

Dec-12 Mineral Resources	Meas	sured Resou	rce	Indi	cated Resou	rce	Inf	erred Resour	ce
Gold and Copper Resources	Dry	Gold	Copper	Dry	Gold	Copper	Dry	Gold	Copper
(# = includes stockpiles)	Tonnes	Grade	Grade	Tonnes	Grade	Grade	Tonnes	Grade	Grade
	(million)	(g/t Au)	(% Cu)	(million)	(g/t Au)	(% Cu)	(million)	(g/t Au)	(% Cu)
Main Dome Open Pit #	28	0.43	0.07	380	0.65	0.08	50	0.57	0.07
West Dome Open Pit	-	-	-	390	0.53	0.06	27	0.54	0.07
Telfer Underground	-	-	-	78	1.3	0.32	21	0.76	0.25
Other	-	-	-	0.57	4.2	0.03	16	0.28	0.34
O'Callaghans	-	-	-	69	-	0.29	9	-	0.24
Dec-12 Ore Reserves	Proved	Reserve		Probable	e Reserve				
Gold and Copper Reserves	Dry	Gold		Dry	Gold				
(# = includes stockpiles)	Tonnes	Grade	Copper	Tonnes	Grade	Copper			
	(million)	(g/t Au)	Grade	(million)	(g/t Au)	Grade			
			(% Cu)			(% Cu)			
Main Dome Open Pit #	28	0.43	0.07	240	0.76	0.09			
West Dome Open Pit	-	-	-	180	0.61	0.06			
Telfer Underground		-		45	1.1	0.3		6	
O'Callaghans			/ juli	59		0.29			

Newcrest: gold and copper Example: The Telfer province

Dec-12 Mineral Resources	Mea	sured Resou	rce	Iı	
California	Dura	C-11	Commen	Dura	From the Newcrest report:
Gold and Copper Resources	Dry	Gold	Copper	Dry	
(# = includes stockplies)	(million)	Grade	(0/Cu)	(million	"Mineral Resources are auoted
	(IIIIIII0II)	(g/t Au)	(% Cu)		
Main Dome Open Pit #	28	0.43	0.07	38	inclusive of Ore Reserves"
West Dome Open Pit	-	-	-	9	though here it is quite simple –
Telfer Underground	-	-	-	7	
Other	-	-	-		Proved Reserve numbers are
O'Callaghans	-	-	-	6	identical to Measured Resource
Dec-12 Ore Reserves	Proved	Reserve		Proba	
Gold and Copper Reserves	Drv	Gold		Drv	numbers.
(# = includes stockpiles)	Tonnes	Grade	Copper	Tonnes	
(I I I I I I I I I I I I I I I I I I I	(million)	(g/t Au)	Grade	(million)	(g/t Au) Grade
			(% Cu)		(% Cu)
Main Dome Open Pit #	28	0.43	0.07	240	0 0.76 0.09
West Dome Open Pit	-	-	-	180	0 0.61 0.06
Telfer Underground		-		45	
O'Callaghans			7-111	59	0 - 0.29

Newcrest: gold and copper Example: The Telfer province

Dec-12 Mineral Resources	Mea	sured Resou	rce	I
Gold and Copper Resources	Dry	Gold	Copper	Dry
(# = includes stockpiles)	Tonnes	Grade	Grade	Tonnes
	(million)	(g/t Au)	(% Cu)	(million
Main Dome Open Pit #	28	0.43	0.07	38
West Dome Open Pit	-	-	-	, q
Telfer Underground	-	-	-	7
Other	-	-	-	
O'Callaghans	-	-	-	6
Dec-12 Ore Reserves	Proved	Reserve		Proba
Gold and Copper Reserves	Dry	Gold		Dry
(# = includes stockpiles)	Tonnes	Grade	Copper	Tonnes
	(million)	(g/t Au)	Grade	(million
			(% Cu)	
Main Dance On an Did #	29	0.42	0.07	24
Main Dome Open Pit #	28	0.43	0.07	24
West Dome Open Pit	-	-	-	18
Telfer Underground		- 6		
O'Callaghans			/- 'dal	5

From the Newcrest report: *"Mineral Resources are quoted inclusive of Ore Reserves"* though here it is quite simple – Proved Reserve numbers are identical to Measured Resource numbers. But in general it cannot be

But in general it cannot be assumed that you can backcalculate the Resources excluding Reserves. It may be necessary to ask the company.

Resources & Reserves: two possible conventions in CRIRSCO-aligned standards

(1) "Resources quoted exclusive of material used to estimate reserves"

(2) "Resources quoted inclusive of material used to estimate reserves"

Resources & Reserves: two possible conventions in CRIRSCO-aligned standards

(1) "Resources quoted **exclusive** of material used to estimate reserves"

(2) "Resources quoted inclusive of material used to estimate reserves"

Resources & Reserves: two possible conventions in CRIRSCO-aligned standards

(1) "Resources quoted exclusive of material used to estimate reserves"

Newcrest: gold and copper Example: The Telfer province

Dec-12 Mineral Resources	Meas	sured Resou	rce	Indi	cated Resou	rce	Inferred Resource			
Gold and Copper Resources	Dry	Gold	Copper	Dry	Gold	Copper	Dry	Gold	Copper	
(# = includes stockpiles)	Top	Uraue	Grade	Tonnes	Grade	Grade	Tonnes	Grade	Grade	
		(g/t Au)	, Cu)	(million)	(g/t Au)	(% Cu)	(million)	(g/t Au)	(% Cu)	
Main Dome Open Pit #	28	0.43	0 7	380	0.65	0.08	50	0.57	0.07	
West Dome Open Pit		-	-	390	0.53	0.06	27	0.54	0.07	
Telfer Underground	-	-		78	1.3	0.32	21	0.76	0.25	
Other	-	-	-	0.57	4.2	0.03	16	0.28	0.34	
O'Callaghans	-	-	-	69	-	0.29	9	-	0.24	
Dec-12 Ore Reserves	Proved	Reserve		Probable Reserve						
Gold and Copper Reserves	Dry	Gold		Dry	Gold					
(# = includes stockpiles)	Tonnes	Grade	Copper	Tonnes	Grade	Copper				
	(million)	(g/t Au)	Grade	(million)	(g/t Au)	Grade				
			(% Cu)			(% Cu)				
Main Dome Open Pit #	28	0.43	0.07	240	0.76	0.09				
West Dome Open Pit	-	-	-	180	0.61	0.06				
Telfer Underground		-		45	1.1	0.3		6		
O'Callaghans			/- 'nhil	59		0.29				

Newcrest: gold and copper Example: The Telfer province

Dec-12 Mineral Resources	Meas	sured Resou	rce	Indi	cated Resou	rce	Inf	erred Resour	ce
Gold and Copper Resources (# = includes stockpiles)	Dry Tor (1)	Gold Grade (g/t Au)	Copper Grade	Dry Tonnes (million)	Gold Grade (g/t Au)	Copper Grade (% Cu)	Dry Tonnes (million)	Gold Grade (g/t Au)	Copper Grade (% Cu)
Main Dome Open Pit #	28	0.43	0 7	380	0.65	0.08	50	0.57	0.07
West Dome Open Pit		-	-	390	0.53	0.06	27	0.54	0.07
Telfer Underground	-	-		78	1.3	0.32	21	0.76	0.25
Other	-	-	-	0.57	4.2	0.03	16	0.28	0.34
O'Callaghans	-	-	-	69	-	0.29	9	-	0.24
Dec-12 Ore Reserves	Proved	Reserve		Probable Reserve					
Gold and Copper Reserves (# = includes stockpiles)	Dry Tonnes (million)	Gold Grade (g/t Au)	Copper Grade (% Cu)	Dry Tonnes (million)	Gold Grade (g/t Au)	Copper Grade (% Cu)			
Main Dome Open Pit #	28	0.43	0.07	240	0.76	0.09			
West Dome Open Pit	-	-	-	180	0.61	0.06			
Telfer Underground O'Callaghans				45 59	1.1	0.3 0.29			

Newcrest: gold and copper Example: The Telfer province

Dec-12 Mineral Resources	Mea	sured Resou	irce	Indicated Resource			T C ID		
			in ce				Not co con horo		
Gold and Copper Resources	Dry	Gold	Copper	Dry	Gold	Copper	Not so easy here:		
(# = includes stockpiles)	Top	Ulace	Grade	Tonnes	Grade	Grade	C		
		(g/t Au)	Cu)	(million)	(g/t Au)	(% Cu)	some of the indicated		
Main Dome Open Pit #	28	0.43	0 7	380	0.65	0.08	Resource has not heen		
West Dome Open Pit			-	390	0.53	0.06	Resource has not been		
						0.00	converted to Probable		
Telfer Underground	-	-		78	1.3	0.32	converted to i tobable		
Other	-	-	-	0.57	4.2	0.03	Reserve – hut we		
				(0)		0.20	Reserve batwe		
OCallagnans	-	-	-	69	-	0.29	don't know how much		
Dec-12 Ore Reserves	Proved	Reserve		Probable	ble Reserve				
Gold and Copper Reserves	Dry	Gold		Dry	Gold				
(# = includes stockpiles)	Tonnes	Grade	Copper	Tonnes	Grade	Copper			
	(million)	(g/t Au)	Grade	(million)	(g/t Au)	Grade			
			(% Cu)			(% Cu)			
Main Dome Open Pit #	28	0.43	0.07	240	0.76	0.09			
West Dome Open Pit	_	-	-	180	0.61	0.06			
				and					
Telfer Underground		-		45	1.1	0.3			
O'Callaghans				59		0.29			

	E1-F1-G1	E1-F1-G2	E2-F2-G1	E2-F2-G2	E2-F2-G3
	Reserve	es (Mt)		Resources (Mt)	
Cement Quarry A (note 1)	Proved	Probable	Measured	Indicated	Inferred
Clay 1	1.43	2.94	0.00	5.46	0.00
Clay 2	0.89	1.14	0.00	3.51	0.00
Limestone 1	1.61	18.25	0.00	27.25	0.00
Limestone 2	0.00	0.00	1.75	2.61	0.00
Limestone 3	1.18	4.26	0.00	8.23	0.00
Cement Quarry B (note 2)					
Limestone 1	2.37	0.00	0.00	0.00	0.00
Limestone 2	32.18	0.00	2.37	0.00	0.00
Cement Quarry C (note 2)					
Limestone 1	0.57	4.50	0.00	5.23	0.00
Limestone 2	24.00	0.00	0.00	1.07	0.00
Aggregate Quarry A (note 3)					
Unit 1	3.35	0.00	16.05	0.00	0.00
Unit 2	46.96	0.00	4.19	0.00	0.00
Aggregate Quarry B (note 4)					
Unit 1	141.05	0.00	8.92	38.96	0.00

0.00

0.00

0.00

 $0.00 \\ 0.00$

0.00

	E1-F1-G1	E1-F1-G2	E2-F2-G1	E2-F2-G2	E2-F2-G3	
	Reserve	es (Mt)	Resources (Mt)			
Cement Quarry A (note 1)	Proved	Probable	Measured	Indicated	Inferred	
Clay 1	1.43	2.94	0.00	5.46	0.00	
Clay 2	0.89	1.14	0.00	3.51	0.00	
Limestone 1	1.61	18.25	0.00	27.25	0.00	
Limestone 2	0.00	0.00	1.75	2.61	0.00	
Limestone 3	1.18	4.26	0.00	8.23	0.00	

Note 1. Reserves and resources comprise the materials to be used in the kiln feed. Materials in the Resources classes include, amongst other things, that tonnage beyond the ratio necessary for the current recipe but which are expected to be worked in the future by additional blending or use of imported additives.

-- relative proportion of such material not specified, so not possible to identify tonnages to different sub-classes.

-2-G3

erred

0.00

0.00 0.00

0.00

0.00

38.96

Note 2. Reserves and resources are stated for those tonnages only that will be recovered based on the current kiln recipe. Other materials are available at the site, but for which there is currently no proposal for recovery hence are not reported.

Limestone 5	1.18	4.26	0.00	8.2.1	0.00
Cement Quarry B (note 2)	2.25	0.00	0.00	0.00	0.00
Limestone 1	2.37	0.00	0.00	0.00	0.00
Limestone 2	32.18	0.00	2.37	0.00	0.00
Cement Quarry C (note 2) Limestone 1	0.57	4.50	0.00	5.23	0.00
Limestone 2	24.00	0.00	0.00	1.07	0.00
Aggregate Quarry A (note 5) Unit 1	3.35	0.00	16.05	0.00	0.00
		_		0.00	0.00

All resources and reserves quoted can be processed with current methods. There may be additional material not reported – but this cannot be listed as we have no numbers for it

		E1-F1-G1	E1-F1-G2	E2-F2-G1	E2-F2-G2	E2-F2-G3			
		Reserve	es (Mt)		Resources (Mt)				
	Cement Quarry A (note 1)	Proved	Probable	Measured	Indicated	Inferred			
	Clav 1	1.43	2.94	0.00	5.46	0.00			
Vot	lote 3 Two different materials are present in the quarry								
vole 5. Two different indlendis die present in the quarty									
suit	able for the produ	ction of a	areaates.	Additiona	l permits	0.00			
			9.090.000			0.00			
are	necessary to reco	ver the res	ources sta	ted.		0.00			
)	und December "luce				F1 2 C1	0.00			
210	ved Reserves, Jus	linea for a	evelopme	nt = EI.I	-F1.3-G1				
	Limestone 1	0.57	4.50	0.00	5.23	0.00			
	Limestone 2	24.00	0.00	0.00	1.07	0.00			
	Aggregate Quarry A (note 3)								
	Unit 1	3.35	0.00	16.05	0.00	0.00			
	Unit 2	46.96	0.00	4.19	0.00	0.00			
_	Aggregate Quarry B (note 4)	141.05	0.00	0.02	20.04	0.00			
	Unit I	141.05	0.00	8.92	38.96	0.00			

◠∰◈◍क़♥๚ॎॎऀ∧∰≶₡क़♥๚(

	E1-F1-G1	E1-F1-G2	E2-F2-G1	E2-F2-G2	E2-F2-G3
	Reserve	es (Mt)	Resources (Mt)		
Cement Quarry A (note 1)	Proved	Probable	Measured	Indicated	Inferred
Clay 1	1.43	2.94	0.00	5.46	0.00
Clay 2	0.89	1.14	0.00	3.51	0.00
Limestone 1	1.61	18.25	0.00	27.25	0.00
Limestone 2	0.00	0.00	1.75	2.61	0.00
Limestone 3	1.18	4.26	0.00	8.23	0.00
Cement Quarry B (note 2)					

Note 4. Additional investment is necessary to recover the resources stated (currently beneath the plant and stock areas).

Resources are "Development on hold" = E2-F2.2-G1 and E2-F2.2-G2

Unit 2	46.96	0.00	4.19	0.00	0.00
Aggregate Quarry B (note 4) Unit 1	141.05	0.00	8.92	38.96	0.00

When data on construction minerals are reported to stock exchanges, they are often aggregated over a number of sites and definition of sub-classes may not be possible.

Imerys 2012: industrial minerals

Product	Region	Proven	Probable	Total		
		2012 (kt)	2012 (kt)	2012 (kt)		
Ball clays						
	Asia/Pacific	899		899		
	Europe incl. Africa	8304	4415	12719		
	North America	4687	1695	6382		
	Total	13890	6110	20000		
Carbonates (calcite, marble, chalk, limestone, dolomite & dimension stone)						
	Asia/Pacific	1589	37426	39015		
	Europe incl. Africa	5824	24278	30102		
	North America	116482	41686	158168		
	South America	610	6800	7410		
	Total	124505	110190	234695		
Clays (brick & re	oof tile raw materials)					
	Europe	85343	1959	87302		
	Total	85343	1959	87302		

Imerys 2012: industrial minerals

	Product	Region	Proven	Probable	Total				
			E1-F1-G1	E1-F1-G2	2012 (kt)				
	Ball clays					_			
		Asia/Pacific	899		899				
		Europe incl. Africa	8304	4415	12719	_			
$\frac{882}{8}$									
viapping these data into UNFC-2009 does not present									
a problem - all will follow the Bridging Document									
	1				015	_			
guide	lines.				102				
					168	-			
_					410	-			
-or go	overnment	reporting it is lik	ely that i	the compa	any <u>195</u>	-			
would	have to h	e asked for detai	l relating	to an	202	-			
			i i ciating		802	-			
ndividual country or regions within a country.									

MINERALS PAGE

Exploration Results

KHAMSIN DRILL HOLES Significant Results KMS004 and KMS006

- KMS004 intersected a broad zone of carbonate, hematite, chlorite granite breccias which hosted bornite and chalcopyrite mineralisation
- KMS004 442m @ 0.49% Cu and 0.09 g/t Au from 1380 including 48.5m @ 1.01% Cu and 0.07 g/t Au from 1385.6m
- KMS006 334m @ 0.75% Cu from 909m including 108m @ 0.92% Cu, 0.40 g/t Au from 1033

A slide from a presentation by Oz Minerals on 28/11/2013

š 🚗 🕅 🗂

Exploration Results

KHAMSIN DRILL HOLES Significant Results KMS004 and KMS006

A slide from a presentation by Oz Minerals on 28/11/2013

KMS004 – intersected a broad zone of carbonate, hematite, chlorite granite breccias which hosted bornite and chalcopyrite mineralisation

KMS004 - 442m @ 0.49% Cu and 0.09 g/t Au from 1380 including 48.5m @ 1.01% Cu and 0.07 g/t Au from 1385.6m

 KMS006 - 334m @ 0.75% Cu from 909m including 108m @ 0.92% Cu, 0.40 g/t Au from 1033 EXPLORATION RESULTS, map to **E3-F3-G4**

OZ MINERALS • PAGE 17

Exploration Targets

Mentioned but not defined in CRIRSCO 2006 Template.

CRIRSCO Nov 2013 Template definition:

An Exploration Target is a statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where the statement or estimate, **quoted as a range of tonnes and a range of grade or quality**, relates to mineralisation for which there has been insufficient exploration to estimate Mineral Resources.

Maps to E3-F3-G4 - like Exploration Results

Exploration Targets

- An Exploration Target may or may not have supporting geological data (geophysical, geochemical, drilling, etc.)
- It should be possible to differentiate along the G axis by sub-division of G4 – representing different relative amounts of geological knowledge

● \$* = 710 * > * = 71

Newera: coal in Mongolia

Newera Resources published a statement on 18th March 2013 concerning its Shanagan Coal Project in Mongolia:

Newera Resources Limited (ASX: NRU) is pleased to advise that work over the last month to calculate an Exploration Target – as defined under Section 17 of the updated JORC Code - has now been completed.

Highlights:

– A determination that an Exploration Target of 64 to 111 million tonnes of coal can currently be attributed to Newera's Shanagan coal project, based on exploration to-date, including Newera's recently completed phase 1 and phase 2 drilling programs.

୭ 👀 क़ 🕅 Щ 🥙 🏘 🔊 👀 क़ 🕅 Щ

Newera: coal in Mongolia

Newera Resources published a statement on 18th March 2013 concerning its Shanagan Coal Project in Mongolia:

Newera Resources Limited (ASX: NRU) is pleased to advise that work over the last month to calculate an Exploration Target – as defined under Section 17 of the updated JORC Code - has now been completed.

Highlights:

 A determination that an Exploration Target of 64 to 111 million tonnes of coal can currently be attributed to Newera's Shanagan coal project, based on exploration to-date, including Newera's recently completed phase 1 and phase 2 drilling programs.

E3.2-F3.1-G4

completed.

Highlights:

Newera Resources pu

2013 concerning its S

Newera: coal in Mongolia

Sub-classes?

As **currently** defined in the Specifications:

"Low case" **G4.1 = 64 million tonnes**

"Best estimate" G4.2 is undefined

Newera Resources Limite "High case" 111 million tonnes. G4.3 is the work over the last month increment 111 - 64

(HH)

G4.3 = 47 million tonnes

 A determination that an Exploration Target of 64 to 111 million tonnes of coal can currently be attributed to Newera's Shanagan coal project, based on exploration to-date, including Newera's recently completed phase 1 and phase 2 drilling programs.

E3.2-F3.1-G4

At the Braemar JV (CAP earning in) and contiguous South Dam project (100% CAP), independent geologists H&S Consultants Pty Ltd (H&SC) have estimated an **Exploration Target of 1.7 to 3.1 billion tonnes, with an estimated magnetite mass recovery (Davis Tube Recovery,** "DTR") of 12 to 27% for between 200 million tonnes and 850 million tonnes of iron concentrate at 63-67% iron (Table 1).

The potential quantity and grade of the Exploration Target is conceptual in nature and there is insufficient exploration to define a mineral resource. It is uncertain if further exploration will result in determination of a mineral resource.

Exploration Target estimates (detail):

Target Area	Strike (km)	Thickness (m)	Down Di (m)	pip	Volume (Mm3)	Density (t/m3)	In situ Tonnes (Mt)	Concentrate (Mt)
South Dam	9.5-10.5	80-120	25	50	190-320	3.05	580-960	70-260
Braemar W	8.5-9.5	80-120	25	50	170-290	3.05	520-870	60-230
Braemar C	8.0-9.0	80-120	25	50	160-270	3.05	490-820	60-220
Braemar E	2.0-4.5	100-150	25	50	50-170	3.05	150-515	20-140
Totals	28.0-33.5	80-150	25	50	570-1040		1740-3170	210-850

Supporting data: three reverse-circulation drill holes and some geophysical exploration (airborne and ground magnetic data): Probably E3-F3.2-G4 because data are not site-specific (... but see recommendations!)

"Exploration Target of 1.7 to 3.1 billion tonnes, with an estimated magnetite mass recovery ... of 12 to 27%"

How do we map this to the G4.1 / G4.2 / G4.3 subclasses?

The same data item is expressed as ranges of TWO parameters, tonnage and grade.

We cannot just say "(low case) 1.7 billion tonnes at 12% to (high case) 3.1 billion tonnes at 27%" because this makes unsupported assumptions about the correlation between tonnage and grade

"Exploration Target of 1.7 to 3.1 billion tonnes, with an estimated magnetite mass recovery ... of 12 to 27%"

How do we map this to the **So we cannot use the** classes? **So we cannot use the G4 sub-classes as they**

The same data item is example are currently defined TWO parameters, tonnag

We cannot just say "(low case) 1.7 billion tonnes at 12% to (high case) 3.1 billion tonnes at 27%" because this makes unsupported assumptions about the correlation between tonnage and grade

Conclusions

What we have learned from these case studies

Granularity

Always quote the main class as well as any sub-class. This allows consistent aggregation of data using the main classes

Possible to map CRIRSCO data naturally to sub-classes in many cases

But – there is a particular problem with exploration data (E3-F3-G4)

Reference Point

- Care is needed to record data with a consistent Reference Point
- In CRIRSCO reports this is usually delivery to a processing plant.
- Processing yield factors should generally be reported, but this is not mandatory, thus point of sale cannot usually be used as the Reference Point

Aggregation of Reserves and Resources estimates

Combining E1 F1 G1-2 with E2 F2 G1-3 ?

- CRIRSCO prohibits this. The numbers cannot be combined, as they are estimates of different things.
- It would seem that the Bridging Document (ECE 42, part II Annex III, p.34, last paragraph) also prohibits this (resources and reserves are considered as separate projects)
- BUT Specification K (ECE 42, part II, section VI(K)) allows aggregation of different projects. This should be amended for consistency – to prohibit aggregation in situations where the numbers in the different classes are not directly comparable

Aggregation OK – classes estimating same type of quantity

Cannot aggregate – classes estimate DIFFERENT things

Exploration Targets

Mentioned but not defined in CRIRSCO 2006 Template.

CRIRSCO Nov 2013 Template definition:

An Exploration Target is a statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where the statement or estimate, **quoted as a range of tonnes and a range of grade or quality**, relates to mineralisation for which there has been insufficient exploration to estimate Mineral Resources.

Maps to E3-F3-G4 - like Exploration Results

There are two problems with the currently defined sub-division of the E3-F3-G4 class:

1. **G4** sub-division in Specification P is data codification. But a range is really a single item of information: just ONE sub-class! Ranges of multiple quantity/quality parameters cannot be accommodated as defined

2. **F3** sub-division in specification R is defined in terms of relative extents of **geological** knowledge rather than technical feasibility

G-axis (G4 class) sub-division

Possible data types include

- raw data drill hole intercepts, geochemical survey data, geophysical data, ...
- > ranges with low case, best estimate, and high case (PRMS)
- > ranges with low and high limits of one OR MORE parameters (CRIRSCO)

> ... potentially many others?

Wrong to sub-divide to provide codification for just one of these data types. CRIRSCO Exploration Targets with ranges of tonnages and grades cannot use these sub-classes

G-axis (G4 class) sub-division Possible data types include A 'range' is just one set of data and ical belongs in just ONE sub-class: suggest > ra deletion of specification P as unnecessary and unworkable. Wron In any case, at this exploration stage, it is unlikely there will be sufficient data to justify such granularity

high

on

qes

This would then allow

- F3 sub-division replace by G4 sub-division
- The current specification R sub-divides the F axis on different degrees of geological knowledge.
- It is incorrect to use the F axis for this purpose. These sub-divisions should lie along the G-axis – not F3.1,F3.2,F3.3 but G4.1,G4.2,G4.3.
- This would leave the F-axis free for sub-division on non-geological aspects of 'project maturity' if required

Orthogonality?

The UNFC-2009 E, F, and G axes should be orthogonal (otherwise we don't have a cube!)

If the F axis represents progress of 'studies' ('project maturity'?), surely these cannot include studies which are socio-economic (E axis) or geological (G axis)?

That would imply that we really need only ONE axis M = project maturity

ECE ENERGY SERIES No. 42 Part II: proposed replacement paragraphs

The report includes proposed text to replace specifications P, Q, and R

G4.3 G4.2 G4.1 G3 G2 G1

UNFC-2009 Definitions

G3: Quantities associated with a known deposit that can be estimated with a low level of confidence.

G2: Quantities associated with a known deposit that can be estimated with a moderate level of confidence.

G1: Quantities associated with a known deposit that can be estimated with a high level of confidence.

G4.3

G4.2

G4.1

G3

G2

G1

The G axis as proposed

UNFC Specifications - Part II, section VI(R) as proposed

- ... favourable conditions may be inferred from regional geological studies
- ... local geological studies and exploration activities indicate the potential
- ... **site-specific geological studies** and exploration activities have identified the potential

UNFC-2009 Definitions

G3: Quantities associated with a known deposit that can be estimated with a **low level** of confidence.

G2: Quantities associated with a known deposit that can be estimated with a **moderate level** of confidence.

G1: Quantities associated with a known deposit that can be estimated with a **high level** of confidence.

G4.3

G4.2

G4.1

G3

G2

G1

The G axis as proposed

UNFC Specifications - Part II, section VI(R)

- ... favourable conditions may be inferred from **regional geological studies**
- ... **local geological studies** and exploration activities indicate the potential
- ... **site-specific geological studies** and exploration activities have identified the potential

CRIRSCO Template

k 🔍 🔃 🚓 🕅 🏹 🥙 1

(INFERRED) Geological evidence is **sufficient to imply but not verify** geological and grade or quality continuity (INDICATED) Geological evidence is ... **sufficient to assume** geological and grade or quality continuity

(MEASURED) Geological evidence is ... **sufficient to confirm** geological and grade or quality continuity

Recommendations for government reporting

"Competent Person" validation

Recommendations for government reporting

"Competent Person" validation

- Competent Person requirement for most public listed companies
- Not normally required for unlisted and private companies

EU Minventory project suggests a government Competent Person to provide consistent data validation: this is a useful general recommendation

Recommendations for government reporting

"Competent Person" validation

- Data formats; tabulation (use two UNFC columns in database, for main classes, and for sub-classes or use ONLY the main classes)
- >Watch for CRIRSCO resource estimates reported inclusive of reserves (avoid double-counting)
- Watch for reporting from joint ventures (avoid double-counting, avoid under-counting)
- Take care if aggregating data reported using very different economic assumptions or cutoff grades

Recommendations for government reporting (continued)

- For `undiscovered' resources, preferable to use non-company data (e.g. geological survey) – as also for uneconomic or unrecoverable
- DO NOT aggregate CRIRSCO-derived resources (E2F2G1-3) classes with reserves (E1F1G1-2) because the estimates are not comparable
- Use a consistent Reference Point (for solid minerals, this is usually delivery to processing plant)

Question raised by Geoscience Australia – how to distinguish Resources "economic now" from "uneconomic now but potentially in the future"?

Classes E2F2G1 / E2F2G2 / E2F2G3

- UNFC: Potentially Commercial Projects are expected to be developed in the foreseeable future, in that the quantities are assessed to have reasonable prospects for eventual economic extraction, but technical and/or commercial feasibility has not yet been confirmed. Consequently, not all Potentially Commercial Projects may be developed.
- CRIRSCO: Mineral Resource definition also says: ... there are reasonable prospects for eventual economic extraction ...
- The CRIRSCO-UNFC mapping is OK but if a government agency wants to distinguish between "economic now" and "uneconomic now but reasonable prospects etc...." how do they do it? Sub-classes have not been defined.
- My answer NOT sub-division of Resources classes.
- Simply requires more information on Modifying Factors (E and F axes) to re-classify as E1-F1-G1 and E1-F1-G2 (CRIRSCO Reserves = "economic now")

Feedback from an industrial minerals company

FIRST POINT

- a) A (the) major consideration today is mining permits. This is a separate question from both socio-economic and technical feasibility, and should be a different axis.
- b) Reserves can only be reported if permits are in place, otherwise will be 211 or 212 class. But Resources could also map to 211, 212, 213. This violates the 1:1 mapping and could lead to confusion

Feedback from an industrial minerals company

SECOND POINT

- a) "... the Economical and Technical Feasibility considerations are in reality very much linked, and the E & F axes should be combined to one. Everything can technically be done...but at a cost !"
- b) The third axis should then be "the combination of all considerations (legal, social, environmental, etc.) that influence on the Permitability. P1 (Permits in place), P2 (Future Permits more likely than not), P3 (Permits Possible, but not Probable)"

Feedback from an industrial minerals company

SECOND POINT - Example: in two deposits to which a E3-F1-G1 code is assigned, you cannot differentiate between an

unsaleable clay deposit, technically ready to go, that is fully permitted

and a

high quality clay deposit, technically ready to go, but located within a nature reserve.
Both might have the same E3-F1-G1 class.
(In this example neither of them would qualify as any kind of CRIRSCO Resource or Reserve)

Summary

- > Defined mapping to main classes (almost) always works
- Extra information in company reports often allows use of sub-classes
- Some minor problems in assigning sub-classes for Resources and Reserves. A more general problem that data quality often does not support sub-classes: for statistical purposes best always to work with main classes
- Exploration sub-classes recommended amendments to the Specifications, or avoid using E3-F3-G4 sub-classes
- Some detailed updates proposed for the Bridging Document

Acknowledgments

I wish to thank

- Members of EGRC for their constructive and helpful reviews
- Members and former members of CRIRSCO -Roger Dixon and Ferdi Camisani in particular
- Charlotte Griffiths for constant help and encouragement

Thank you

