Application of UNFC-2009 to Nuclear Fuel Resources

Harikrishnan 'Hari' Tulsidas

Division of Nuclear Fuel Cycle & Waste Technology, IAEA Vice-Chairman, Expert Group on Resource Classification (EGRC) Member, Technical Advisory Group, UNFC

Working Group on Nuclear Fuel Resources

- First Consultancy meeting 4-5 April, 2011
- Second Consultancy meeting, 30 April 1 May, 2012
- Third Consultancy meeting, 22-23 April, 2013
- Final Draft Submitted to EGRC Bureau / TAG 18 February, 2014

Task Force on Nuclear Fuel Resources

- Australia Ian Lambert, Yanis Miezitis, Leesa Carson
- Brazil / CYTED Roberto C. Villas-Bôas
- China Mingkuan Qin, Shengxiang Li
- India Prem Ballabh Maithani, Prathap Singh Parihar
- Kazakhstan Ayim Mukusheva, A Marat
- Portugal Luis Martins
- UK Julian Hilton
- USA Bradley S. Van Gosen
- CRIRSCO Ferdi Camisani, Paul Bankes
- OECD-NEA Robert Vance
- UNECE Experts Group Michael Lynch-Bell, James (Jim) Ross, David MacDonald, Charlotte Griffiths

Action Hanly, Hari Tulsidas (Chair)

Top Priorities

Talking a common language ?

Photo H Tulsidas, IAEA

IAEA Uranium Production Site Assessment Team (UPSAT) reviewing the planned Mkuju River Uranium Project, Tanzania - on the edge of Selous Game Reserve and UNESCO World Heritage Site – 27 May to 5 June, 2013

Uranium resources data

NEA/IAEA Red Book 2011

IAEA UDEPO

Total 7 096 600 tU

Total 33 881 999 tU

Undiscovered Resources: 10 400 000 tU

IAEA /OECD NEA Uranium 2011: Resources, Production and Demand

http://infcis.iaea.org

NEA-IAEA Classification Scheme

			IDENTIFIED	RESOURCES	UNDISCOVERED RESOURCES			
actit verice		<usd 40="" kgu<="" th=""><th>Reasonably Assured Resources</th><th>Inferred Resources</th><th>Prognosticated Resources</th><th></th></usd>	Reasonably Assured Resources	Inferred Resources	Prognosticated Resources			
	e at costs	USD 40-80/KgU	Reasonably Assured Resources	Inferred Resources	Prognosticated Resources	Resources		
1000 211101	Recoverabl	USD 80- 130/KgU	Reasonably Assured Resources	Inferred Resources	Prognosticated Resources	peculative		
	Ŧ	USD 130- 260/KgU	Reasonably Assured Resources	Inferred Resources	Prognosticated Resources	S		

Decreasing confidence in estimates

Project Maturity – The Third eye

'Red Book' Production Terminology

Existing production centres are those that currently exist in operational condition [...]

<u>Committed</u> production centres are those that are either under construction or are firmly committed for construction.

Planned production centres are those for which feasibility studies are either completed or under way, but for which construction commitments have not yet been made. [...]

Prospective production centres are those that could be supported by tributary RAR and Inferred, i.e., "Identified Resources", but for which construction plans have not yet been made. [...]

Example of Company Public Reporting – Rio Tinto 2012 Annual

Report (available at riotinto.com; Please note Cautionary statement about Forward-looking statements provided in the report)

	_	Proved ore	reserves	Pro	bable ore		Тс	tal ore rese	rves 2012	Average		T
	l ype of mine	at	end 2012	reserves at	end 2012			compared	with 2011	mill	Interect	0 Linto share
	(a)	Tonnage	Grade	Tonnage	Grade		Tonnage		Grade	%	% %	metal
						2012	2011	2012	2011			
COPPER		millions of tonnes	% Cu	millions of tonnes	% Cu	millions of tonnes	millions of tonnes	% Cu	% Cu			millions of tonnes
Reserves at operating mines												
Bingham Canyon (US)												
– open pit (l)	O/P	417	0.53	287	0.44	704	835	0.49	0.48	85	100.0	2.940
– stockpiles (m)		40	0.22	41	0.34	80	80	0.28	0.22	85	100.0	0.191
Escondida (Chile)												
– sulphide (n)	0/P	2,739	0.79	2,145	0.59	4,884	1,993	0.70	0.97	84	30.0	8.672
 – sulphide leach (o) 	O/P	1,103	0.49	822	0.44	1,926	3,503	0.47	0.50	35	30.0	0.954
– oxide (p)	O/P	53	0.95	38	0.88	91	111	0.92	0.86	69	30.0	0.173
Grasberg (Indonesia)	0/P + U/G	800	1.15	1,624	0.93	2,424	2,523	1.00	0.97	89	(q)	6.905
Northparkes (Australia)												
 open pit and stockpiles 		8.2	0.40			8.2	8.4	0.40	0.41	86	80.0	0.022
– underground	U/G			66	0.80	66	62	0.80	0.85	89	80.0	0.377
Oyu Tolgoi (Mongolia)												
 South Oyu open pit (r) 	O/P	426	0.54	614	0.40	1,040	955	0.46	0.49	82	33.5	1.304
 South Oyu stockpiles (s) (r) 		9.0	0.44			9.0	-	0.44	-	85	33.5	0.011
Palabora (South Africa) (t)	U/G			35	0.54	35	49	0.54	0.57	84	57.7	0.093
Total												21.642
Reserves at development projects												
Eagle (US) (u)	U/G			5.2	2.49	5.2	4.3	2.49	2.69	97	100.0	0.126
Oyu Tolgoi (Mongolia)												
 Hugo Dummett North (v) 	U/G			460	1.80	460	410	1.80	1.90	92	33.5	2.550
– Hugo Dummett North Extension (w)	U/G			31	1.73	31	27	1.73	1.85	92	30.5	0.151
Total												2.826

Example of Country Reporting - Canada, "Red Book", 2011

	Centre #1	Centre #2	Centre #3	Centre #4	Centre #5	Centre #6	Centre #7
Name of production centre	McArthur River /Key Lake	McClean Lake	Rabbit Lake	Cigar Lake	Midwest	Millennium	Kiggavik
Production centre classification	Existing	Existing	Existing	Committed	Planned	Planned	Planned
Start-up date	1999/1983	1999	1975	2013	NA	NA	NA
Source of ore:							
Deposit name(s)	P2N et al.	JEB, McClean, Sue A-E, Caribou	Eagle Point	Cigar Lake	Midwest	Millennium	Kiggavik, Andrew Lake, End Grid
Deposit type(s)	Unconformity	Unconformity	Unconformity	Unconformity	Unconformity	Unconformity	Unconformity
Resources	135 500 tU	4 400 tU	11 300 tU	81 000 tU	13 300 tU	19 600 tU	44 000 tU
Grade (% U)	12.2	1.96	0.61	14.0	4.68	3.8	0.47
Mining operation:							
Type (OP/UG/ISL)	UG	OP/UG	UG	UG	OP	UG	OP/UG
Size (tonnes ore/day)	NA	NA	NA	~200	NA	~500	~1 500
Average mining recovery (%)	NA	NA	NA	NA	NA	NA	NA

Attempting alignment

UNFC Class	Sub-class	Е	F	G	Status	Description
	On Production	1	1.1	1,2	Existing	Extraction taking place
Commercial Projects	Approved for development	1	1.2	1,2	Committed	Funds committed and implementation under way
	Justified for development	1	1.3	1,2	Planned	Detailed feasibility studies completed
Potentially commercial	Development Pending	2	2.1	1,2,3	Prospective	Project activities ongoing to justify development in foreseeable future
projects	Development on hold	2	2.2	1,2,3		Project activities on hold; may be subject to significant delay
Non-commercial	Development Unclarified	3.2	2.2	1,2,3		Economic viability cannot be determined due to insufficient information
projects	Development not Viable	3.3	2.3	1,2,3		No reasonable prospects for economic extraction in foreseeable future
		3.2	3.1	4.1	Prognostic.	Based primarily on indirect data in well defined trends
Exploration projects	Δ.	3.2	3.2, 3.3	4.2, 4.3	Speculative	Based primarily on indirect data

Bridging document

Bridging
 Documents explain
 the relationship
 between UNFC 2009 and another
 classification
 system

- Bridging Document between NEA/IAEA Classification and UNFC-2009 prepared after wide consultation and preliminary testing
- Also in alignment with solid mineral CRIRSCO

specifications in

	UNFC Classifica	tion	NEA/IAEA Classification			
UNFC Class	es and Sub-classes	UNFC Categories				
Class	Sub-Class	Е	F	G	Status	IAEA-NEA Categories
	On Production	1	1.1	1,2	Existing	Reasonably Assured
Commercial Projects	Approved for Development	1	1.2	1,2	Committed	Resources (RAR)
	Justified for Development	1	1.3	1,2	Planned	
Potentially commercial	Development Pending	2	2.1	1,2,3	Prospective	Identified Resources
projects	Development On Hold	2	2.2	1,2,3		RAR IR*
Non- commercial	Development Unclarified	3.2	2.2	1,2,3	Unclarified	Identified Resources
projects	Development not Viable	3.3	2.3	1,2,3	Not viable	RAR IR*
Exploration		3.2	3.1	4		Prognosticated Resources
projects		3.2	3.2, 3.3	4		Speculative Resources

*Inferred Resources

E-F Matrix

	F1.1	F1.2	F1.3	F2.1	F2.2	F2.3	F3.1	F3.2	F3.3	F4
E1.1	1	2	3	4						
E1.2	1	2	3							
E2			4	4	5					
E3.1										
E3.2				6	6		8	9	9	
E3.3					7	7				11

E and F Categories set minimum standards for the UNFC-2009 Classes.

NEA/IAEA Classification	NEA/IAEA Classification	NEA/IAEA Production Terminology	UNFC-2009 Sub- classes	Mapping
	Reasonably	Existing	On Production	1
	Assured Resources	Committed	Approved for Development	2
		Planned	Justified for Development	3
Identified Resources		Prospective	Development Pending	4
	Reasonably Assured Resources +		Development on Hold	5
		Unclarified	Development Unclarified	6
	Inferred Resources	Not Viable	Development Not Viable	7
			Unrecoverable	11
Undiscovered	Prognosticated Resources			8
Kesources	Speculative Resources			9
			Unrecoverable	11
			Less Common Mappings	

Changes suggested

- Add a short glossary explaining "Red Book" terms
- Develop a Guidebook on "Application of United Nations Framework Classification – 2009 for uranium and thorium projects".

Transferring volumes

NEA/IAEA Red Book System

UNFC-2009

Bridging document will aid transfer of resources reported in Red Book system to UNFC-2009 or vice-versa

Key milestones in U/Th production cycle

Thank you

Harikrishnan TULSIDAS | Nuclear Technology Specialist |

Section of Nuclear Fuel Cycle and Materials | Division of Nuclear Fuel Cycle and Waste Technology | Department Nuclear Energy |

International Atomic Energy Agency | Vienna International Centre, PO Box 100, 1400 Vienna, Austria | Email: T.Harikrishnan@iaea.org | T: (+43-1) 2600-22758 | M: (+43) 664-736-11790 | F: (+43-1) 2600-7 | Follow us on www.iaea.org

