Development of An Assessment Method for Airbag Noise in Modern Vehicles

Stephen W. Rouhana, Ph.D. Member of ISO Delegation

For Presentation to the UN/ECE GRSP Working Party on Passive Safety

May 8, 2001

Benefits of Airbags

• US - NHTSA Final Economic Assessment of FMVSS 208 Advanced Airbags Rule:

- Lives Saved By Airbags

- 5303 from 1987 to March 2000
- 842 in 1997 with airbags in:
 - 36% of passenger cars
 - 28% of light trucks and vans
- 3253 annually in a 100% pre-1998 airbag fleet

Benefits of Airbags

- US NHTSA Final Economic Assessment of FMVSS 208 Advanced Airbags Rule:
 - MAIS = 1 injuries
 - Minimal effect on reducing these injuries
 - MAIS 2-5 injuries
 - Estimated reduction of 29007 injuries annually in a 100% pre-1998 airbag fleet

Assessment Method

• Previous Work

- Measurement Procedure*
 - Test Procedure
 - In-vehicle with windows up
 - Instrumentation Requirements
 - Microphones vs Pressure Transducers
 - Data acquisition system frequency response

* (Source: Rouhana et al, 1994)

Assessment Method

- Previous Work
 - Parameter Study*
 - Noise due to driver vs passenger airbag
 - Effect of bag material
 - Vented vs unvented bags
 - Pyrotechnic vs Hybrid inflators
 - Aspirated inflators
 - Effects of vehicle volume

* (Source: Rouhana et al, 1994)

Assessment Method

• Previous Work

- Injury Risk Study Using ARL Ear Model**

- Evaluation of previous criteria
- In-vehicle noise in a crash without airbags
- Description of feline model validation results
- Evaluation of Model from Practitioners View
 - Repeatability
 - Hazard prediction
 - Observational Analyses
 - ** (Source: Rouhana et al, 1998)

Assessment Method

- Previous Work
 - Injury Risk Study Using ARL Ear Model**
 - Results from Previous Human Volunteer Experiments
 - <u>– N</u>ixon (1969)
 - Sommer and Nixon (1973)
 - Field Observations
 - Fleet Evaluation with AHAAH
 - 35 vehicles from 18 manufacturers
 - ** (Source: Rouhana et al, 1998)

Results of Previous Work Open Vs Closed

Small Pickup Cab For Tests With Roof (Doors Closed for Test)

Results of Previous Work

Sommer & Nixon Study (1973)

• Exposures of 10 Human Subjects

	SPL (dB)	TTS
Low Frequency	165	None
High Frequency	153	3 dB
Low + High Frequency	165	1 dB

Results of Previous Work Field Reports		
• Nixon (1969)*	1/91 (1.1%)	
• Saunders, et al. (1995)	6	
• McFeely, et al. (1998)	20	
• Buckley, et al. in U.K.(1999)	2	
• Huelke, et al. (1999)	3/177 (1.7%)	
• Yaremchuk (1999)	60	

*Experimental study, not a field report

ISO and SAE Work

- Work Items Opened in ISO & SAE
 - ca. 1995
 - Same individuals in Europe and US
 - Goal to draft ISO Standard and SAE Recommended Practice
 - Committees identified issues in need of addressing before such standards could be completed

Major Issues Remaining

- Do we need a chamber or in-vehicle test?
- At what seating position(s) should measurements be made?
- Should measurements be made with vehicle windows up or down?
- Should measurements be made with a head form?
- Can measurements be made using a mannequin instead of crash dummy?

Major Issues Remaining

- Should the ARL Ear Model be used with middle ear muscles warned or unwarned?
- Is the human validation of the ear model acceptable?
- What are the injury risk curves for noiseinduced threshold shift as a function of Auditory Damage Units?

ISO and SAE Work

- Weissach Tests
 - 1998 SAE Impulse Noise Task Force tests at Porsche to resolve:
 - Selection of a head form for testing
 - Measurements in a chamber vs in-vehicle
- SAE Information Report J1531
 - Draft now in accelerated review
- Ford Motor Company Tests
 - 2001 Program to resolve remaining issues

Ford Motor Company Tests

- Goal:
 - To perform the research necessary to establish test procedures that will enable:
 - assessment of the risk of noise-induced threshold shifts from deployment of inflatable devices in motor vehicles, and
 - development of industry standards
 - supplier airbag development programs that address issues relative to inflatable device deployment

- How does noise/pressure/risk vary within a vehicle during deployment of inflatable devices?
 - Horizontal variation (Seating position)
 - Vertical variation (Occupant seated height)

Horizontal Variation

Frontal Airbag System

Measurements at up to 8 locations in 10 different vehicles

Ford Motor Company Tests

- How does the risk change when multiple devices are deployed?
 - Simultaneously
 - Staggered deployment

Ford Motor Company Tests

- What components contribute most to the risk of noise-induced hearing loss?
- Can we modify components to reduce noise while still preserving the crash performance of the system?
- How does the risk from depowered airbags compare to previous results?

Summary

- We thank Dr. Hohmann and Switzerland for focusing attention on this issue in this forum
- Valid assessment methods have not been available in the past
- Use of inappropriate methods could lead to greater risk

Summary

- Airbags are effective devices at reducing risk of fatality and serious injury
- While hearing loss is an important issue, methods to reduce noise must be balanced by the inflatable device's primary life-saving and injury-reducing function
- With the ARL Ear Model it may now be possible to achieve both

Summary

- Regulatory action is premature at this time:
 - Need peer-review of criterion and model human validation
 - Need to complete experimental study to finalize recommended measurement practice
- Regulations may need longer phase-in due to challenges associated with maintaining crash performance while addressing noise

