Economic Commission for Europe
Inland Transport Committee
Working Party on the Transport of Dangerous Goods
Joint Meeting of the RID Committee of Experts and the Working Party on the Transport of Dangerous Goods 26 September 2017
Geneva, 19–29 September 2017
Item 7 of the provisional agenda
Reports of informal working groups

Follow up to the work of the informal working group on reducing the risk of a BLEVE – simulations of the behaviour of tanks exposed to fire in complement to document ECE/TRANS/WP.15/AC.1/2017/42

Transmitted by the Government of France
Model for the thermal response of Liquefied Petroleum Gas Tanks subjected to accidental heat input

Emilie RASOOLY - Adrien WILLOT – Etienne CATRY
INERIS
Structural Resistance Unit – Accidental Risk Division
RID ADR JOINT MEETING 09-2017
DRA-17-164468-08069A
Summary

• Introduction
• Tank subjected to full fire engulfment
 • Evaluation of a valve efficiency
 • Evaluation of thermal coating and increased steel thickness
 • Conclusion on the PRV/thermal coating efficiency
• Calculation on tanks subjected to fire on lower part
 • New calculation assumptions
 • Calculation results
 • Calculation analysis
• Conclusion
Introduction

Reminder of previous work: reliability of the model demonstrated

• Previous work [1]:
 • development of a predictive tool to study the behaviour of different configurations tanks
 • demonstration of reliability of the model by comparison with BAM experiments (2013)

Tank subjected to full fire engulfment

Evaluation of a valve efficiency - Calculation results

- Reminder: these results have been presented at RID ADR Joint meeting 03-2017
- Common PRV considered (diameter 2” and P_{opening} 16.5 bar) on LPG tank: volume 31m^3, filling rate 50%
- Thermal loading: full fire engulfment

\Rightarrow **Safety valve is not efficient in that case**

![Full fire engulfment](image-url)

Results considering a common safety valve: risk of BLEVE
Tank subjected to full fire engulfment

Evaluation of a valve efficiency - Calculation results

- Test of an ideal safety valve on the same tank with the same thermal loading
- This safety valve set to low pressure (8 bar) is not efficient:
 - A very low applied stress is observed as expected
 - Failure is due to a sharp fall of Yield stress of steel
 - This result can be generalized to all filling rate

Results considering an ideal safety valve (set to 8 bar): risk of BLEVE due to sharp fall of Yield stress of steel
Tank subjected to full fire engulfment

Evaluation of thermal coating and increased steel thickness - Calculation results

- 2 other protections are tested: thermal coating and increasing steel thickness of shell to 3 cm
- Thermal coating can avoid or delay BLEVE but several issues are raised concerning use on trucks:
 - no retrofit about ageing
 - behaviour with vibrations
 - behaviour with various climatic conditions
 - etc...
- Increasing steel thickness of shell is efficient to avoid BLEVE, but 3 cm thick shell are needed (unfeasible)

Results considering a thermal coating: no risk of BLEVE

Results considering a 3 cm thick shell: no risk of BLEVE
Conclusion about tanks subjected to full fire engulfment

Conclusion on the PRV/thermal coating efficiency (RID ADR Joint meeting 03-2017)

- Valves are not efficient for some scenarios (ex: full fire engulfment)
- Other protections (thermal coating or increasing of shell thickness) may delay/avoid BLEVE but may present issues (ageing, cost, etc...)

Full fire engulfment
Calculation on tanks subjected to fire on lower part

New calculation assumptions

• Calculations led on tanks with safety valve only and subjected to a smaller size fire (localized on lower part of tank)
• New calculations are therefore led considering a smaller size fire scenario with the following conservative parameters:
 • Pool fire on lower part of tank
 • Fire reaches immediately intense burning on the entire length of the truck and has an infinite duration (a real fire can have a duration of 3 hours, and an intense burning of 30 minutes)

[2] CFPB, Feu de pneus et de cabines sur des citernes GPL, Mai 2010
Calculation on tanks subjected to fire on lower part
New calculation assumptions

• Characteristics of the LPG tanks (same as those considered at *RID ADR Joint meeting 03-2017*):
 • Volume: 31 m³
 • Common PRV – pressure relief valve- (diameter: 2” & Popening: 16.5 bar)
• 3 scenarios are calculated for 3 filling rates (great influence on results): 85%, 50% and 30%

Example of heating of a tank
filling rate: 30 %
Calculation on tanks subjected to fire on lower part

Calculation results

Filling rate: 85% – safety valve efficient **no BLEVE**

Filling rate: 50% – safety valve **NOT** efficient, *BLEVE*

Filling rate: 30% – safety valve **NOT** efficient, *BLEVE*
Calculation analysis

- Previous results show the great influence of filling rate on results
- The impact of filling rate is explained below:

Large Fire on liquid phase (Pool fire)

The steel shell in contact with the gas phase is **not** impacted by the fire

Filling rate: 85%

The steel shell in contact with the gas phase is impacted by the fire

Filling rate: 30%

In that case, most of blast scenarios can be excluded with a standard PRV

In that case, the blast risk is high (included case where the tank is equipped with an ideal PRV)
Conclusion

• **Full fire engulfment:**
 - Safety valve only can not protect tank because of mainly the reduction in the steel resistance due to high temperature
 - Tank with an appropriate safety valve and a thermal coating could survive a full fire engulfment until it empties completely

• **Fire on lower part only – tank equipped with a common pressure relief valve:**
 - Pressure relief valve may avoid or delay BLEVE for tank with high filling rate
 - BLEVE may occur for low filling rate, due to heating of shell in direct contact with gas

• **Way forward:**
 - Assess the maximal fire a tank equipped with the best safety valve would survive even under low (unfavorable) filling ratio conditions
 - Compare this fire with the fire most likely to happen. This « typical » fire can be estimated thanks to:
 • Refined modeling of fire using a computational fluid dynamics software (FDS – Fire Dynamics Simulator) to obtain better precision on distribution of heat fluxes for 3D tank modeling
 • Statistical assessment to estimate the most likely fire hypothesis
 - This will allow to assess the efficiency of safety valves in terms of risk reduction even if they would not ensure total resistance to fire in 100% of the cases