Research Proposal

Quantitative analysis of Side Impact injuries, and effectiveness of existing countermeasures Extension of existing work on side airbag effectiveness

Australian Government

Department of Infrastructure and Transport

Existing work

- Analysis of effectiveness of side airbags using the "Used Car Safety Rating" database (Australia)
- Few current results are statistically significant
- Some likely trends though
 - Significant effectiveness of side airbags shown for far (non-struck) side crashes
 - No reduction in injured occupants
 - But signs of reduction of injury severity including substitution of more minor injury types, such as extremity.
- Needs more data

Task 1 – Airbag Effectiveness

- Extend existing assessment of effectiveness of side airbags
 - Estimate effectiveness of side airbags in reducing injury risk and severity in pole side impact crashes
 - Including examination of effectiveness of different side airbag technologies

ustralian Government

Department of Infrastructure and Transport

– Data sources:

- Australia:
 - UCSR police reported crash database
 - TAC claims data linked to Victorian police reported crash data
 - Western Australian hospital admissions and mortality data linked to WA police reported crash data.
 - Details of vehicle fitment for this purpose provided by the Commonwealth drawing on information obtained from vehicle manufacturers.
- International:
 - NASS-CDS data (USA)
 - European police reported crash data being assembled for VTI driven MUNDS project
 - European In-depth Crash data

Task 2: Assess injury risk and injury severity

- Estimate injury risk and severity in pole side impacts relative to other side impacts both overall controlling for the following factors and interacting with the following factors:
 - gender;
 - occupants height, mass and BMI;
 - by near and far side impact;
 - by vehicle type including passenger, sport utility, and light commercial;
 - seating row in the vehicle with and without an adjacent occupant present;
 - restrained and unrestrained occupants, and
 - level of vehicle intrusion and impact angles

- Data Sources
- Australia:
 - UCSR police reported crash database
 - ANCIS data (and earlier in-depth datasets held by MUARC)
 - TAC claims data linked to Victorian police reported crash data
 - Western Australian hospital admissions and mortality data linked to WA police reported crash data.
- International:
 - NASS-CDS data and the Fatality Accident Reporting System (FARS)(USA)
 - European police reported crash data being assembled for VTI driven MUNDS project
 - European In-depth Crash data

Task 3: Assess relative risk, severity and cost of injuries to different body regions

- Estimate injury risk and severity to vehicle occupants in side impacts relative to other crash types
 - specifically examining pole side impact and other side impacts.
 - As a minimum the analysis would examine injuries to
 - head,
 - neck,
 - spine,
 - thorax,
 - abdomen,
 - pelvis,
 - upper extremities;
 - and lower extremities.

- Differences in injury patterns by occupant age and gender, seating position and impact angle and intrusion would be examined if possible.
- Injury risk and severity would be measured using a sensitive measure such as AIS.

Australian Government

Department of Infrastructure and Transport

- Data Sources
- Australia:
 - TAC claims data linked to Victorian police reported crash data
 - Western Australian hospital admissions and mortality data linked to WA police reported crash data.
 - ANCIS data
- International:
 - NASS & FARS data from USA
- European In-depth Crash data

Task 4: Cost Effectiveness analysis

- Conduct a cost-effectiveness analysis using the analysis outcomes from Tasks 1-3
 - including the likely benefits given a business as usual approach
 - and the potential influence of acceptance of the test procedure. Appropriate cost-benefit methods would be used in line with those previously developed for assessment of outcomes from vehicle safety regulation changes.

