Research Proposal

Quantitative analysis of Side Impact injuries, and effectiveness of existing countermeasures
Extension of existing work on side airbag effectiveness
Existing work

• Analysis of effectiveness of side airbags using the “Used Car Safety Rating” database (Australia)
• Few current results are statistically significant
• Some likely trends though
 – Significant effectiveness of side airbags shown for far (non-struck) side crashes
 – No reduction in injured occupants
 • But signs of reduction of injury severity including substitution of more minor injury types, such as extremity.
• Needs more data
Task 1 – Airbag Effectiveness

- Extend existing assessment of effectiveness of side airbags
 - Estimate effectiveness of side airbags in reducing injury risk and severity in pole side impact crashes
 - Including examination of effectiveness of different side airbag technologies
– Data sources:

• Australia:
 – UCSR police reported crash database
 – TAC claims data linked to Victorian police reported crash data
 – Western Australian hospital admissions and mortality data linked to WA police reported crash data.
 – Details of vehicle fitment for this purpose provided by the Commonwealth drawing on information obtained from vehicle manufacturers.

• International:
 – NASS-CDS data (USA)
 – European police reported crash data being assembled for VTI driven MUNDS project
 – European In-depth Crash data
Task 2: Assess injury risk and injury severity

• Estimate injury risk and severity in pole side impacts relative to other side impacts both overall controlling for the following factors and interacting with the following factors:
 – gender;
 – occupants height, mass and BMI;
 – by near and far side impact;
 – by vehicle type including passenger, sport utility, and light commercial;
 – seating row in the vehicle with and without an adjacent occupant present;
 – restrained and unrestrained occupants, and
 – level of vehicle intrusion and impact angles
• **Data Sources**
 • **Australia:**
 – UCSR police reported crash database
 – ANCIS data (and earlier in-depth datasets held by MUARC)
 – TAC claims data linked to Victorian police reported crash data
 – Western Australian hospital admissions and mortality data linked to WA police reported crash data.
 • **International:**
 – NASS-CDS data and the Fatality Accident Reporting System (FARS)(USA)
 – European police reported crash data being assembled for VTI driven MUNDS project
 – European In-depth Crash data
Task 3: Assess relative risk, severity and cost of injuries to different body regions

• Estimate injury risk and severity to vehicle occupants in side impacts relative to other crash types
 – specifically examining pole side impact and other side impacts.
 – As a minimum the analysis would examine injuries to
 • head,
 • neck,
 • spine,
 • thorax,
 • abdomen,
 • pelvis,
 • upper extremities;
 • and lower extremities.
– Differences in injury patterns by occupant age and gender, seating position and impact angle and intrusion would be examined if possible.

– Injury risk and severity would be measured using a sensitive measure such as AIS.
• **Data Sources**

• **Australia:**
 – TAC claims data linked to Victorian police reported crash data
 – Western Australian hospital admissions and mortality data linked to WA police reported crash data.
 – ANCIS data

• **International:**
 – NASS & FARS data from USA

• **European In-depth Crash data**
Task 4: Cost Effectiveness analysis

• Conduct a cost-effectiveness analysis using the analysis outcomes from Tasks 1-3
 – including the likely benefits given a business as usual approach
 – and the potential influence of acceptance of the test procedure. Appropriate cost-benefit methods would be used in line with those previously developed for assessment of outcomes from vehicle safety regulation changes.