
GTR 7 Informal Working Group February 28 – March 1 2011 Brussels, Belgium

VRTC Rear Impact Sled Testing Status

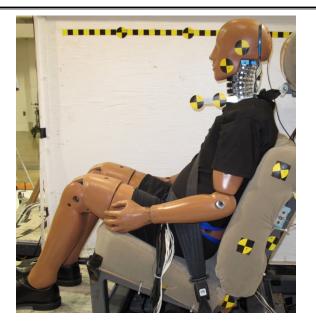
BioRID II vs. Hybrid III and FMVSS 202a vs. ENCAP-Annex 9

Edward Probst, NHTSA James Stricklin, TRC

March 2011

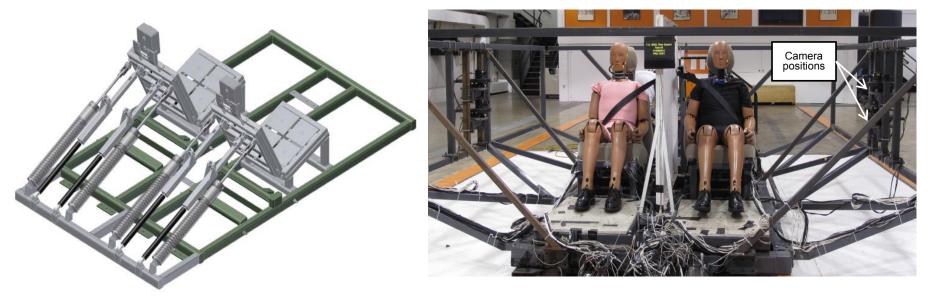
- Objective
 - Compare the responses of the BioRID II (g) with those of the Hybrid III when subjected to FMVSS 202a and ENCAP-A9 pulses
- Methods
 - Utilize the side-by-side VRTC rear impact research buck on the TRC HYGE sled.
 - Vary seat configuration from "perceived" <u>good</u> to <u>poor</u> by varying head restraint backset.
- Results
 - BioRID II Good discrimination with A9 pulse and ENCAP evaluation criteria
 - Hybrid III Head/T1 angle correlates with backset ; little discrimination with other 202 or A9 parameters
 - Results affected by mass and rigidity of research buck seat/head restraints
- Follow-up Activities
 - Additional sled tests planned utilizing "good-rated" OEM seat design (March/April)

March 2011


Test Methods – ATDs

- BioRID II 50th
 - Fully certified by Humanetics (Denton) prior to test
 - Configured to change level "G"

- Hybrid III 50th
 - Pre-test certified head and neck

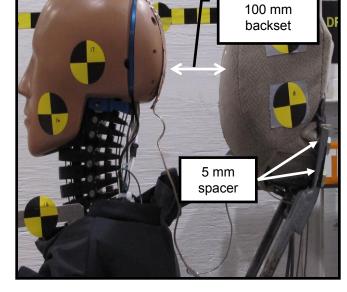


Rear Impact

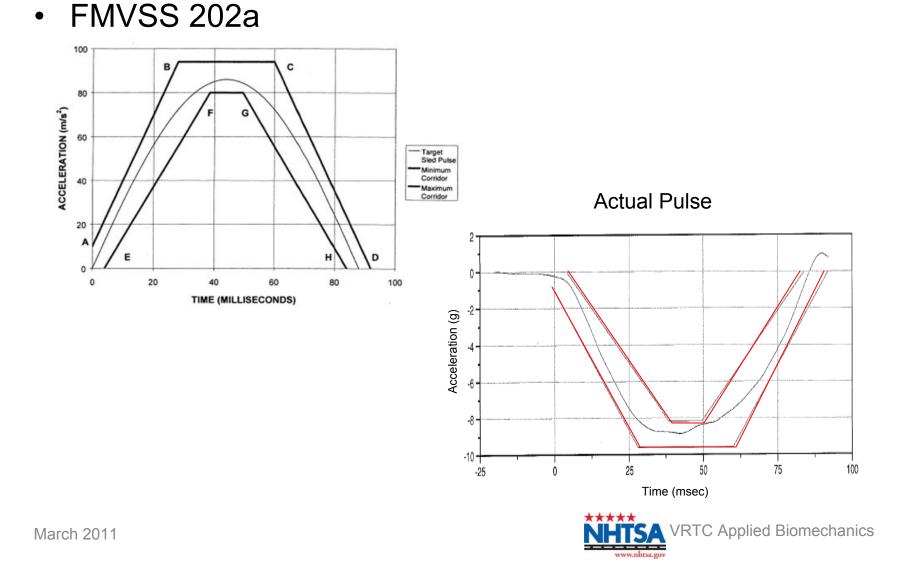
Sled Testing

Test Methods -Buck and Seat Setup

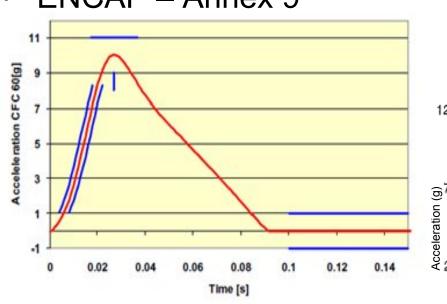
- Experimental rear impact test buck
 - Repeatable/reusable test environment
 - 1999 Toyota Camry seat configuration/geometry
 - Realistic seat back rotation response
 - Side-by-side configuration (mirror image belt configurations)



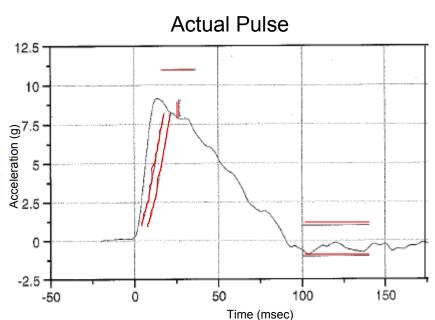
Test Methods -


Buck and Seat Setup (cont.)

- Head restraint designed to produce varying degrees of backset
 - 25, 50, 75 and 100 mm
 Good → *Poor*
- Seats "Oscar'd" at beginning of each pulse sequence
 - Establish seat H-pt
 - Check for seat cushion compression
- Camera positions:
 - Full view and upper torso close-up
 - 1000 fps



Test Methods -Sled Pulse


Test Methods -Sled Pulse (cont.)

Rear Impact Sled Testing

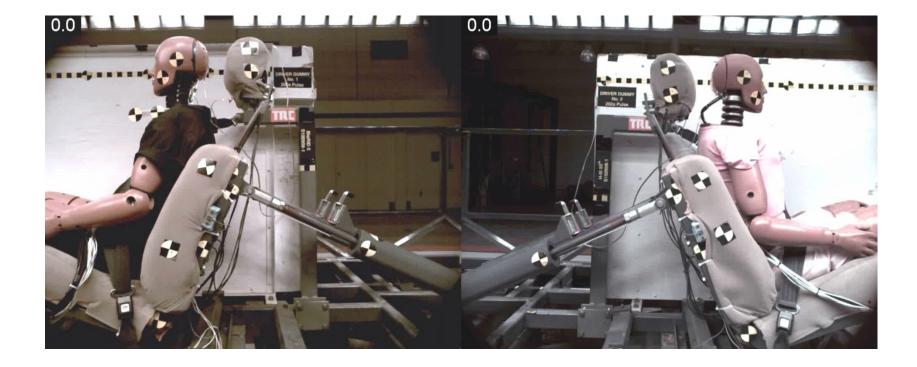
• ENCAP – Annex 9

- Issues
 - Evaluated several existing pins
 - Best option onset too fast
 - 4-5 weeks -\$5K for new pin

Test Methods –

Instrumentation

- BioRID II
 - 26 channels
 - Accels head, T1, T8, lumbar, pelvis
 - Load skull cap, upper & lower neck, lumbar
 - Moment upper & lower neck, lumbar
 - ARS head, T1, pelvis
- HIII
 - 18 channels
 - Accels head, T1, pelvis
 - Load upper & lower neck, lumbar
 - Moment upper & lower neck, lumbar
 - ARS head, T1, pelvis
- Sled
 - 25 channels
 - Acceleration
 - Head contact
 - Seat pan and seat back load cells, accels, and ARS


Test Methods –

- Pulses segregated to minimize pin changes
- Backsets randomized
- Dummies assigned seating position

Te st number	Pulse	Backset (mm)	H3 50th	BioRID
1	202a	75	Right	Left
2	202a	100	Right	Left
3	202a	75	Right	Left
4	202a	25	Right	Left
5	202a	50	Right	Left
6	202a	100	Right	Left
7	202a	25	Right	Left
8	202a	50	Right	Left
9	Annex 9	50	Right	Left
10	Annex 9	75	Right	Left
11	Annex 9	100	Right	Left
12	Annex 9	25	Right	Left
13	Annex 9	100	Right	Left
14	Annex 9	75	Right	Left
15	Annex 9	50	Right	Left
16	Annex 9	25	Right	Left

Typical Test – 202a Pulse, 75 mm Backset

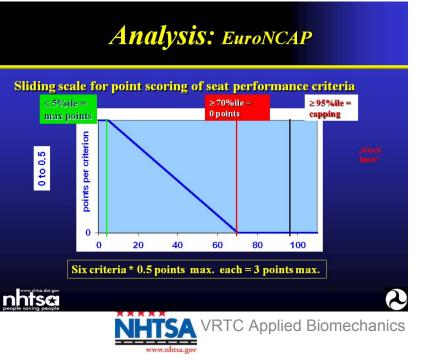
Results – Evaluation Criteria

- FMVSS 202a
 - Head-to-T1 angle (less than 12° extension)
 - HIC₁₅
 (Less than 500)

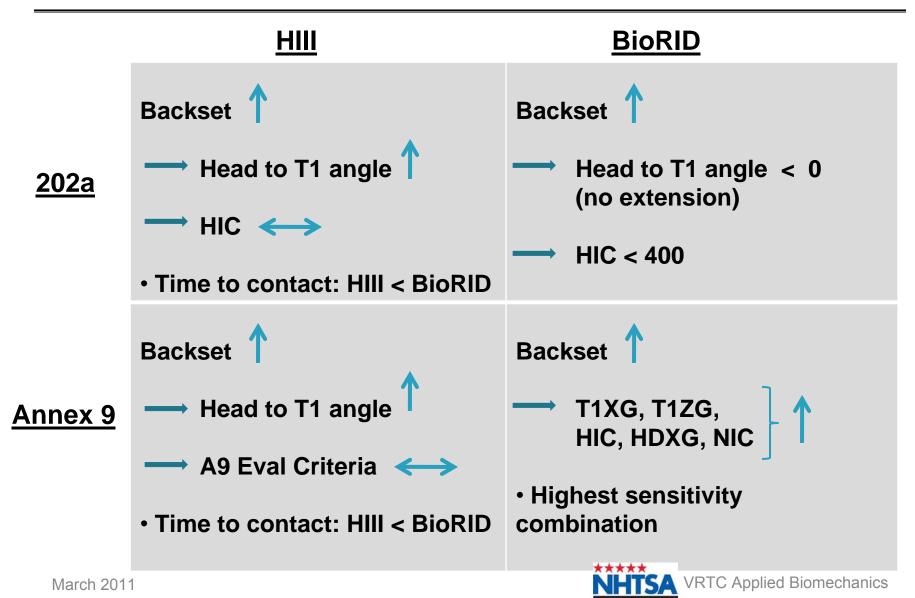
- ENCAP (Whiplash assessment)
 - Upper Neck Shear, Fx
 - Upper Neck Tension, Fz
 - T1 Acceleration
 - NIC [f(relative head-T1 accel & vel)]
 - Nkm [f(UPNK Fx & My)]
 - Time to Head Restraint
 First Contact
 - Rebound velocity

Results – Evaluation Criteria (cont.)

Rear Impact Sled Testing


Analysis: EuroNCAP

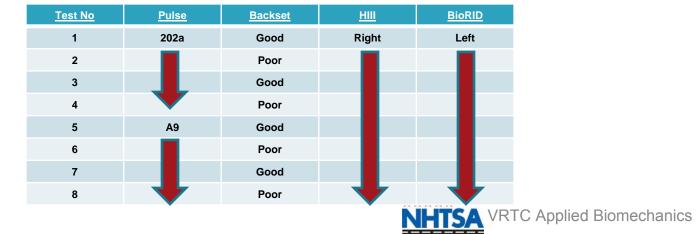
High, Low and Capping limits – medium pulse


a Units	Medium Severity		
	HPL		CL
m²/s²	11,00	24,00	27,00
-	0,15	0,55	0,69
m/s	3,20	4,80	5,20
N	30,00	190,00	290,00
N	360,00	750,00	900,00
g	9,30	13,10	15,55
ms	57,00	82,00	92,00
	m²/s² - m/s N N g	Impl m²/s² 11.00 - 0,15 m/s 3,20 M 30,00 N 360,00 g 9,30	Imple Imple Imple m²/s² 11,00 24,00 · 0,15 0,55 m/s 3,20 4,80 N 30,00 190,00 N 360,00 750,00 g 9,30 13,10

Slides from B. Donnelly presentation at GTR meeting Sept., 2010.

ENCAP method of rating seat performance for whiplash protection

Results – Data Observations



- BioRID does not appear to display meaningful discrimination with respect to 202a assessment criteria
 - Head-to-T1 angle
 - HIC
- HIII better in 202a with this seat configuration
 - Shows expected discrimination wrt Head-to-T1 rotation
 - No discrimination shown wrt HIC
- Choice of buck appears to have affected the results
 - Head restraint too hard
 - Seat pan and seat back may be too stiff (inadequate suspension)

New Test Plan –

- 1. New Side-by-side Buck with OEM seats
 - 2011 Chevy Cruze driver seats
 - Rated "Good" in ENCAP and IIHS rear impact assessments
 - Devise backset adjustability to produce "Good" and "Poor"
- 2. Fabricate new A9 HYGE gun metering pin
 - Designed specifically for new buck
 - Goal is to achieve better compliance with A9 corridors
- 3. Proposed Matrix eight tests (two repeats of each condition)

Rear Impact Sled Testing

Thank you

March 2011