

FI-12-05 (Deg)

- No Developed to address an inconsistency between
 - Accident investigation: a restraining system with a belt load limitation at 4kN and an AB is much more efficient than a belt with a load limitation at 6kN.
 - Crash tests: the deflections measured on an HIII were higher with the 4kN+AB system compared to the 6kN.
 - ➤ The increase of deflection due to the airbag loading was higher than the decrease of deflection associated to the decrease of belt load.
 - ➤ This would not have been an issue if the risks associated to the deflection were the same for the belt and the airbag

$$\sigma \max = Mf \max/(I/v) + Fc/s$$

$$Mf \max = Fz*(I/2)$$

$$\sigma \max = Fz*I/2.(I/v) + Fx/s$$

$$\sigma \max = \alpha(Fz/Fzcritical + Fx/Fxcritical)$$

$$If Fzcritical \neq Fxcitical then$$

$$\sigma \max \neq \beta Ftot$$

combination (d localized, d distributed)

combination (d localized, d distributed)? **Iso-risk curves** ocalized Cumulative risks distributed Separated risks Linked risks

quadratic combination form of localized and distributed deflections

- Equivalent deflection criterion was evaluated against 48 paired HIII and PMHS tests
- An injury risk curve was proposed based on accident investigations

\$\psi\$ probability of AIS3+ risk for 45 years

	Current laboratory study		Accidentologic al study 🕮
	Sternal deflection criterion	Equivalent deflection criterion	Shoulder belt criterion
4 kN belt + airbag	27 %	1 %	1 %
6 kN belt	13 %	11 %	18 %

equivalent deflection criterion predicts risk consistent with accidentological study results

Foret-Bruno et al. (2001)

Equivalent Deflection Criterion improves the injury prediction for combined loadings

better than the sternal deflection criterion for the data sample used

- using Hybrid III available measurements
 - \$\to\$ application in short term
 - by potential improvement of its reliability with several thoracic deflection measurements
- better protection with 4 kN load-limiting belt plus airbag than with 6 kN load-limiting belt

Further analysis

- \$Check hypothesis with updated Human Body Model
- \$Check coefficients with updated data/methods
 - Risque curves from PMHS Airbag loading
 - Relative risk using HBM
- Use of THMPHR to better evaluate the real deflection and therefore the accuracy of the Equivalent deflection.
 - The maximum deflection itself does not discriminate belt/Airbag loading
 - The THMPHR is complementary to the Equivalent deflection

