WLTP-DTP Subgroup Additional Pollutants

Progress report

GENEVA UN EC Date: 08. June 2011

M. C. Astorga Llorens

Sustainable Transport Unit Institute for ENERGY EC-DG JRC, Ispra (IT)

Terms of reference and scope of the work of this sub-group
Pollutants addressed and General guidelines
Meetings schedule
Table of candidate methods

Definitions/ Abbreviations

•Open questions in the GTR Draft document

•Conclusions and next steps; documents loaded in CIRCA Database

Additional pollutants subgroup – Terms of reference

The Additional Pollutants subgroup received a mandate for the development of test procedures for pollutants not currently regulated such as NO_2 , NH_3 , N_2O including measurement equipment and formulae for the measurement for light duty vehicles.

Scope of Activity

The subgroup undertakes the following tasks on the basis of procedures in existing legislation and expert knowledge within the group:

- **1.** Agree on additional pollutants to be addressed.
- 2. Identify appropriate measurement methods for each pollutant.
- Describe measurement, calibration procedures as well as calculations based on existing legislation and on output from lab procedure subgroup.
 Drofting (COTE)

6

4. Drafting of GTR legislation text.

WLTP-DTP-AP, O. Mörsch / C. Astorga

Meeting schedule

First Meetina:	Telephone/Web Conference	
5	Date: 20th July 2010	5 meetings (2 phone
	16 participants	conferences and 3
		face to face meetings
2nd Meeting:	Telephone/Web Conference	in December 2010,
5	Date: 20th July 2010	March and May 2011)
	20 participants	, , , , , , , , , , , , , , , , , , ,
3rd Meeting:	Face to face meeting at JRC/Ispra	
	Date: 9/10 Dec. 2010	
	14 participants	for the time being, no further face to face
4th Meetina:	Face to face meeting at BMW/Munich	meeting planned
	Date: 7/8 March 2011	
	18 participants	
5th Meeting:	Face to face meeting at JRC/Ispra	

Pollutants to be addressed:

Terms of reference and scope of the work of this sub-group
Pollutants addressed and General guidelines
Meetings schedule
Table of candidate methods

Definitions/ Abbreviations

•Open questions in the GTR Draft document

•Conclusions and next steps; documents loaded in CIRCA Database

WLTP-DTP Subgroup Additional Pollutants Progress Report June 2011

WLTP DTP Additional Pollutants subgroup								
Title	Open issues							
Working Paper Number	WLTP-DTP-AP-07-02 Open Issues May 2011							

OIL – resolved 11.05.2011

• Possible reference methods have been identified. Possible source of text has been added where possible.

Performance criteria

- Gathering of performance data for candidate methods has been tasked within group.
- Based on the Range of emission level to be measured performance criteria (LoD, LoQ, rise time and max. interference) have been derived.
- A table of candidate methods to be evaluated has been set up.

Table of candidate methods for additional pollutants

			uted		ine	line	LoD	LoQ	transformat	rise		
Pollutant	Method	baç	dil	rav	on	off	[ppm]	[ppm]	ion time [s]	time [s]	interference	Base
NO2	CLD differential		Х		Х		0.3	0.9		1	< 2% H2O+CO2	ECE Reg. 83/EPA 1065.272
	NDUV-RAS direct		Х		Х		0.04	0.12		3	none	ECE Reg. 83/EPA 1065.272
	QCL direct		Х		Х		0.1	0.3	1	1	none	
	FTIR direct		Х		Х		0,9 (0,2 possi	2.7		1	managed	
N2O	GC-ECD	Х				Х	0.01	0.03	na	na	none	EPA 1065.275
	NDIR	Х			Х		0.1	0.3		5	multiple	EPA 1065.275
	QCL	Х			Х		0.01	0.03			none	
	FTIR	Х			Х		0,9 (0,2 possi	2.7		1	managed	EPA 1065.275
	ring down cavity	Х			Х		0.0003	0.001	2.5	1	none	in research
	Photo Acoustic	Х			Х						multiple	EPA 1065.275
NH3	LDS (in situ)			Х	Х						H2O, p, T, managed	Commitology EUVI
(SCR systems)	LDS (extractive)			Х	Х		0.2	0.6	definition n	eccessary	H2O, managed	Commitology EUVI
	FTIR			Х	Х		0,3 (0,06 pos	0.9	definition n	eccessary	managed	Commitology EUVI
	QCL			Х	Х		0.1	0.3	definition n	eccessary	none	
Ethanol	Impinger + GC-FID		x			x	0,1 µg/ml -> 0),18?				CARB NMOG Part C METHOD 1001 EPA 1065.805
(E21+)	Photo Acoustic	Х			Х		0.06				H2O, CO2, NH3, ROH managed	MSO 2000-08
	GC-FID from bag	Х				Х	0.18				none	
	QCL	Х			Х		not yet availal	ble				
	FTIR (bag)	Х			Х		1 (0,2 possibl	e)			managed	
Aldehydes (E21+)	Cartridge + HPLC		х			Х	0,0075 µg/ml					CARB NMOG Part F METHOD 1004
	FTIR		Х		Х		0,3/0,9				managed	
	QCL		?		Х		not yet availal	ble				
		-	<u> </u>							-		

(reference methods)

LoD determined by use of traceable cal. gases

General: EPA 1065.205

WLTP-DTP-AP, OI. Mörsch C. Astorga

Definitions:

Linearization:

application of a range of concentrations or materials including zero to establish the mathematical relationship between concentration and system response

Linearization check:

application of a range of concentrations or materials including zero to verify the mathematical relationship between concentration and system response

Calibration:

zero, span adjustment with calibration gases or calibration materials

Verification:

zero, span check with calibration gases or calibration materials, no adjustment

Abbreviations/Definitions:

- **RCHO** Formaldehyde plus Acetaldehyde
- HCHO Formaldehyde
- CH₃CHO Acetaldehyde
- EtOH Ethanol
- **THC** Total Hydrocarbons (All compounds measurable by FID)
- NMOG Non-methane organic gases (NMHC plus EtOH and RCHO)
- NMHC Non-methane hydrocarbons (THC excluding CH₄ and EtOH, response factors are applied)
- NOx Oxides of nitrogen
- NO Nitric oxide
- NO₂ Nitrogen dioxide
- N₂O Nitrous oxide
- NH₃ Ammonia

Open Issues - resolved

- Handling of lost sample in raw exhaust sample
 - \rightarrow Proposal:

Limit sample flow (10 l/min) and return sample (no drying, heated or diluted return) or (at manufacturers request) Additional cycle

- Linearization of *in situ* instruments
- Verification of *in situ* instruments
- FTIR: linearization
- FTIR: Verification

- → According to instrument manufacturer at least once a year
- → within 24 h at concentration of standard
- → after manufacture and after major analyzer repair
- \rightarrow within 24 h

Open Issues - resolved

- Allow calculation of NOx from NO + NO₂ \rightarrow no
- Allow QCL and other technologies for NO and NO₂ from modal dilute → yes
- Calibration/verification of CLD for NO-Mode → to be done separately
- linearization of CLD for NO-Mode → can be taken over from NOx
- Applicability of ETOH and aldehyde measurement → E21+

Open Issues

```
NH<sub>3</sub> sampling during engine off
```

```
Temperature for NH<sub>3</sub> sampling (110 - 190?° C)
```

```
proposal: → set-point between 110 ° C and 190 ° C with range of +/- 10 K
→ JAMA position: between 110 ° C and 133 ° C due to decomposition of
urea
```

Traceability to national standards of calibration gas for AP
→ DTP → gas industry → difficulties for NH₃, EtOH to be expected, achievable accuracy/stability has to be established

Next Steps

Continue drafting of GTR [*] in small groups (as well as OIL):

Tasks have been assigned within group and the outcome will be delivered for the next meeting

- <u>Next face-to-face workshop</u>:
 (.....)
- Additional Tel/web conferences

[*] Draft GTR proposal: WLTP-DTP-LabProcICE-061

Additional pollutants contact persons:

Chair: Daimler-Stuttgart oliver.moersch@daimler.com

Co-chair: EC-DG JRC Institute for ENERGY

covadonga.astorga-llorens@jrc.ec.europa.eu

Ref.: CIRCA documents WLTP-DTP-AP

Draft GTR proposal: WLTP-DTP-LabProcICE-061

& open questions: WLTP-DTP-AP-07-02 Open Issues May 2011

THANKS FOR YOUR ATTENCION

C. Astorga

covadonga.astorga-llorens@jrc.ec.europa.eu <u>http://ies.jrc.cec.eu.int</u> <u>http://ie.jrc.cec.eu.int/Units/</u>

WLTP-DTP-AP, O. Mörsch / C. Astorga