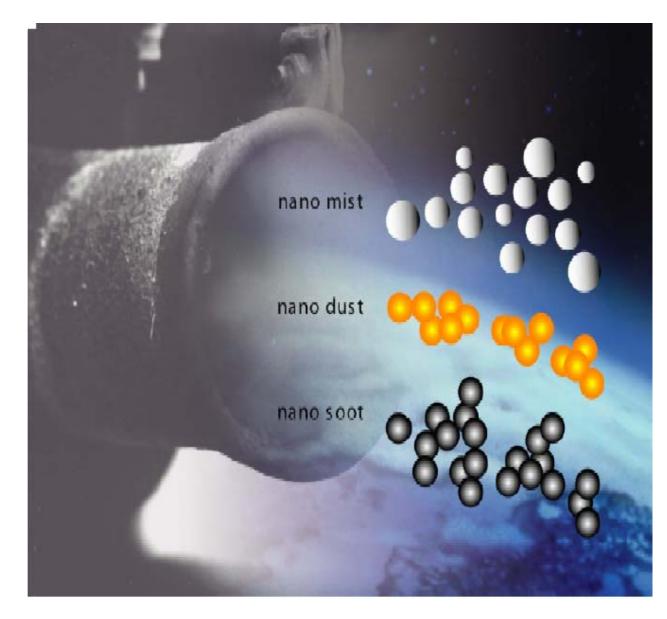
EU-PMP, ISPRA Dec.6.2011

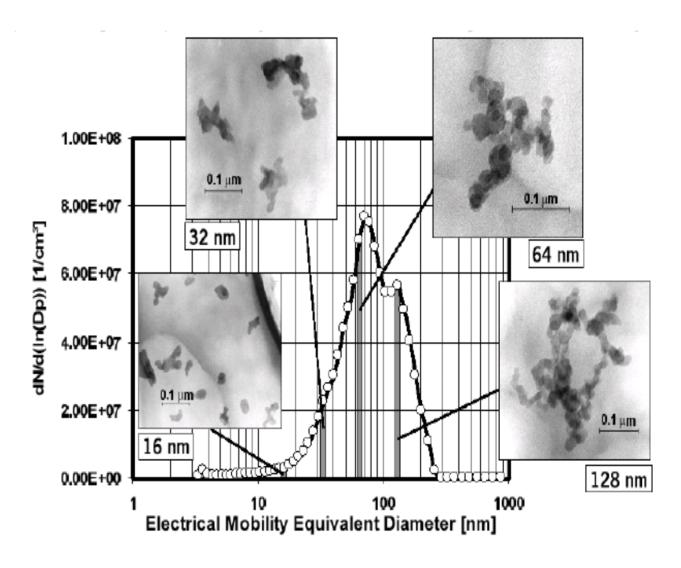
Nanosize Metal Oxide Particles emitted by Diesel- and Petrol-Engines

> Andreas Mayer / TTM J. Czerwinski / AFHB; M. Kasper / MA, John J.Mooney

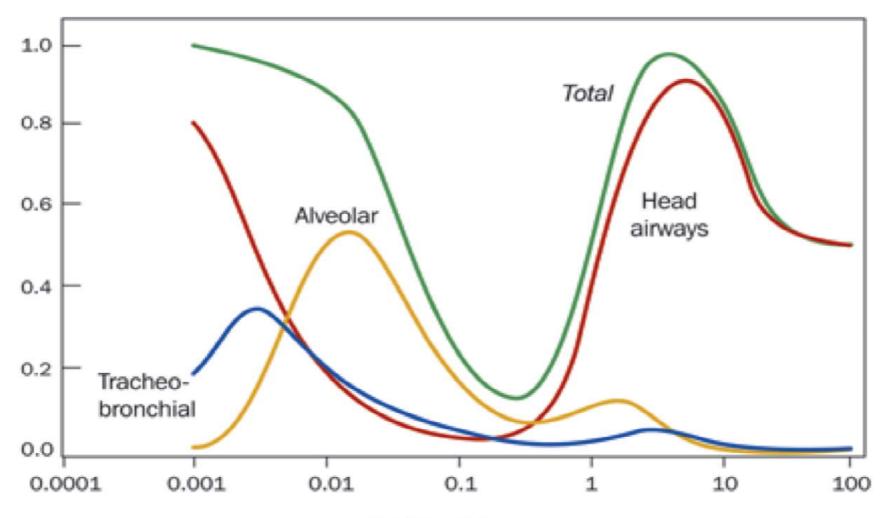

PMP-26-08

ICE Exhaust Gas Contains

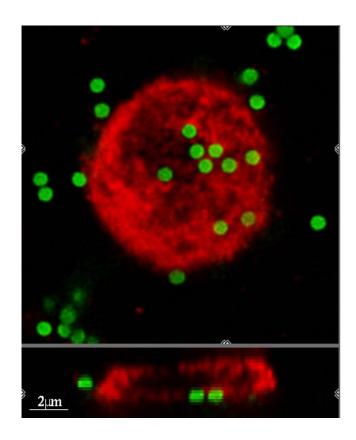
Soot Particles Ash Particles Condensates


internally or externally mixed

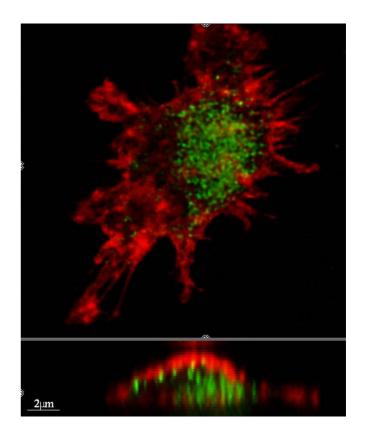
which of them are of highest concern with respect to human health ?


Diesel Particles

maybe "decorated" with metal oxic particles ?


Predicted deposition of inhaled particles

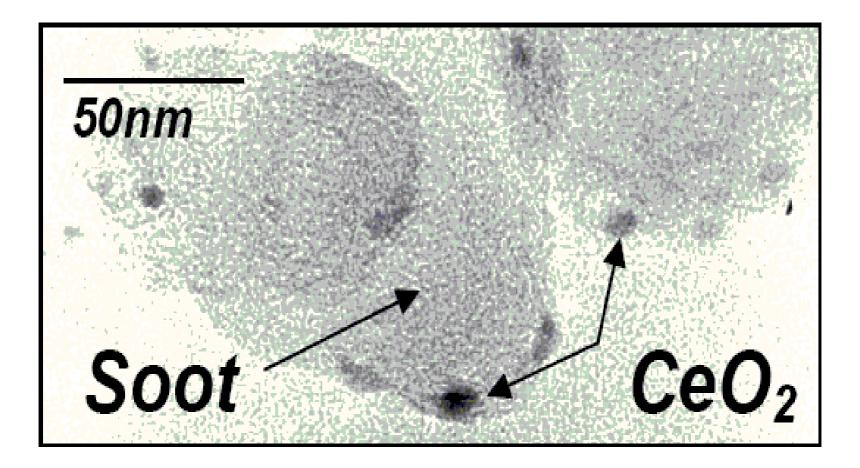
in the human respiratory tract – ICRP [1994] model: light exercise, nose breathing (Source Oberdörster)



Diameter (µm)

Macrophages in vitro: Laser Scanning Microscopy

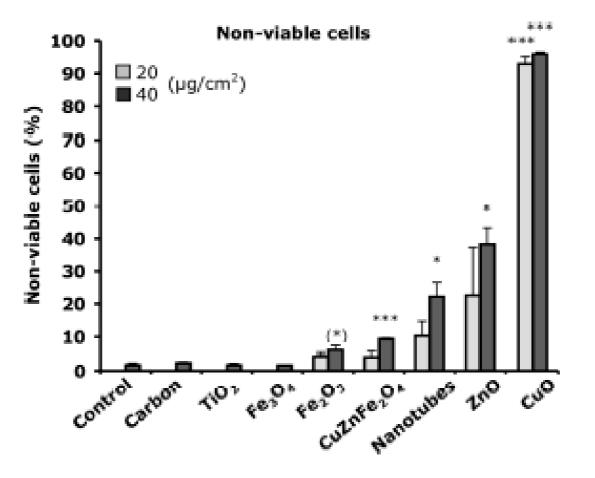
1-μm Polystyrene particles



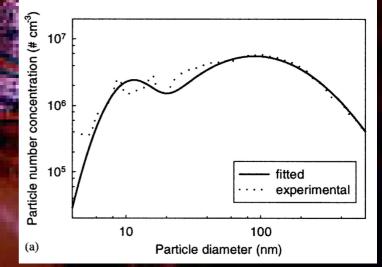
78-nm Polystyrene particles

Source: B. Rothen-Rutishauser Uni Bern

Cerium oxide FBC on soot particles


source:Rhodia

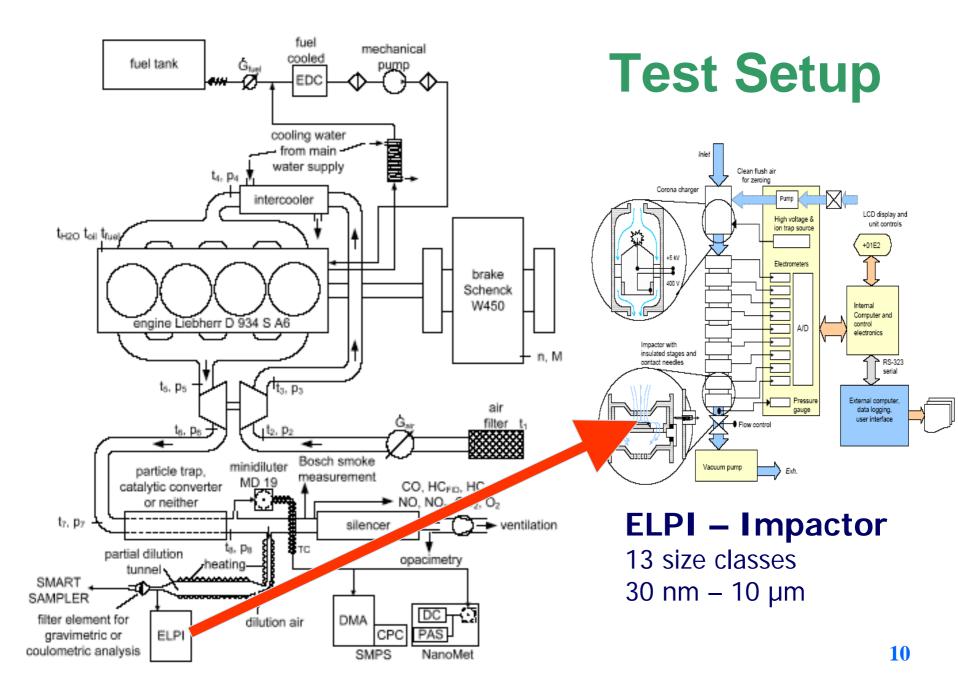
What makes Particles harmful ? Concentration, Size and Substance


Particulate Substances have very different toxicity

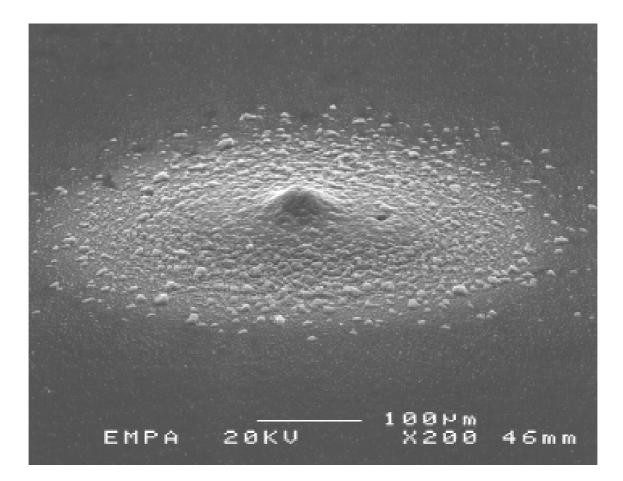
% cells not surviving Karlsson, Chem, Res.Tox 1998

Racette et al., 2001: Welding-related Parkinsonism

Metal Welders develop Parkinson Desease 20 years before average population



Zimmer et al.


Sources of Metals

Engine Wear: Fe, Ni, Cr, Al, Si
Bearing Wear: Cu, Sn
Lube Oil: Zn, Ca, P
Cat.Coatings: Pt, Pd, V, Cu, Ce
FBC: Fe, Ce, Pt, Cu

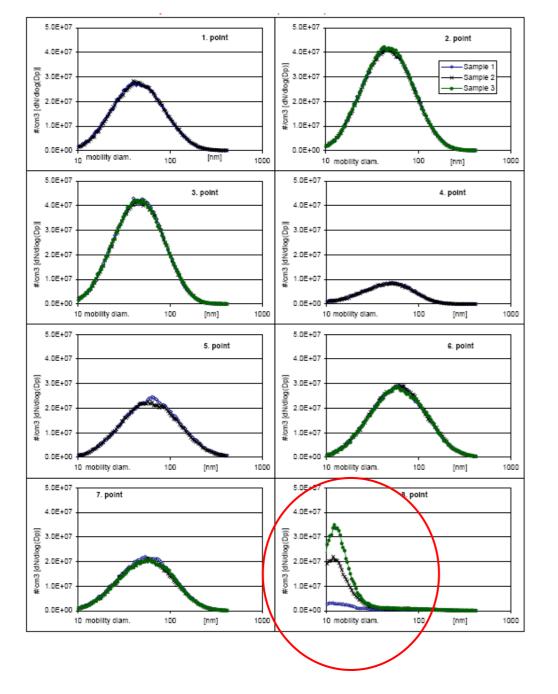
VERT-DPF-certification protocol looks at metal emissions size-specific – part of the secondary emissions test VSET

ELPI-sample

Plasma Mass Spectrometry ICP-MS

Fast Multi-Element Technique: 75 Elements in 2 min. High Sensitivity ppt Levels (ng)

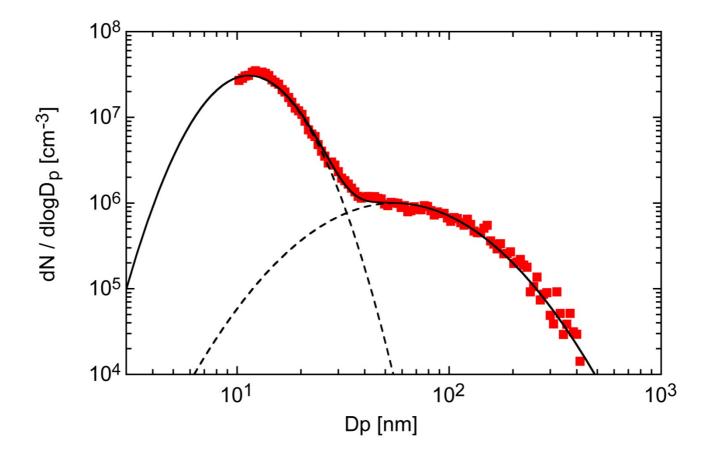
The ELAN® Series of ICP-Mass Spectrometers


Simplifying Ultratrace Analysis

H					-		10			100 Detection RC II Detection							He
1			-		-		- (2)	7	iin Class	100 clean	noom) noom)			Abundance Indant leote	, per		1
1			State of	CONTRACTOR OF STREET,		100 million (1997)			Detecti	on Limit I	Ranges						4
Zui J	Be		17-							.1 ppt	0.0007240000	B	C	N	0	F	Ne
1			1		1000				0.1	-1 ppd			1		1		
					Sec. 1				1-1	0 ppt		11	12	14		19	
Na	Mg	6			-		2	P	10	100 ppt		AI	Si	P	S	CI	Ar
			2						0.1	-1 ppb			1	1.1	1 1		1
	24								1.1	d ppb			-	-			40
K	Ca	Sc	Ti	VV.	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
1550	1		T	11	1		1		1.	125	E	1.000	h.	1000		1	T
	40	45											Illen	75			
Rb	Sr	Y	Zr	Nb	and the second	Te	Ru	Bh	Pd	Ag	Cd	In	Sn	Sb	Te		X
1		100	1000	1000	1.1	1	1.	a casa	11.	1	I		.1		11		Ld
- <u>ll</u>				89	iddi		100	108		107		115				127	 13
Cs	Ba	La	Hr	Та	W	Re	Os	/Ir	Pt	Au	Hg	T	Pb	Bi	Po	At	R
	1	1	Constant of the second s	1.4	A CONTRACTOR OF A CONTRACTOR A	1	.I	i.	1	1	1		1	Ĩ		1000	- 22
Lunit?	. James	age another	_ili_				dL		lle		III_	S. Herei		-			
Fr	Ra	Ac	100	101	184	1807	102	100	195	107	250	206	208	209			
-1	ria.	AC															

DIESEL – Emission

- Particle Mass Emission of Diesels is limited since 1982
- Size and number PN were first adressed
 for retrofit in Swiss Tunneling in 1994
 for OE with EURO 5/6 in 2007
- Both regulations focus on solid particles
- Substance is not adressed yet



Baseline Diesel Liebherr Construction 6.1 Itr, 110 kW 64 mg/kWh

Size distributions without DPF ISO 8178/4-C1 – 8 pts

OP 8 = idle Sampling: 300°C, DR=100

Analysis for Idle OP8 without DPF Double-LogNormal Fit of a Bimodal Distribution

Double-LNDF Fit of Bimodal Particle Distribution OP8 (idle) compared to 50%load without DPF

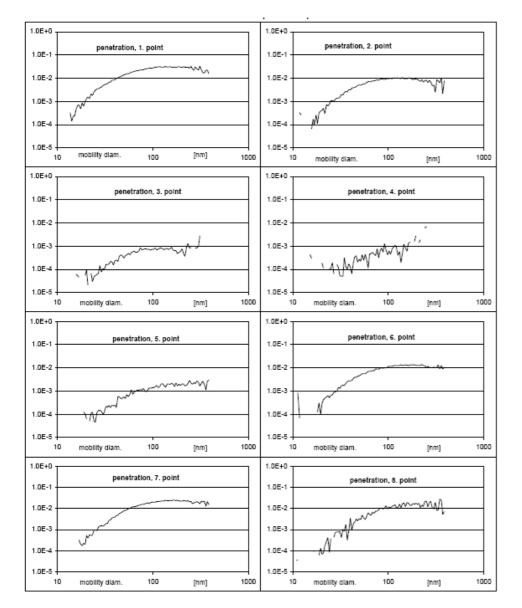
	OP 8 = Idle	OP 5 = 50% load
N tot [1/cc]	1.46E+07	1.80E+07
N ash [1/cc]	1.37E+07	-
N soot [1/cc]	8.56E+05	1.80E+07
D ash [nm]	11.8	-
D soot [nm]	48.3	61.1

Size Specific Metal Analysis without DPF – Idle

ELPI Stages	Size class D50%	Fe	Ni	Zn	Са	Rh	Pt
	[µm]	[µg/stage]	[µg/stage]	[µg/stage]	[µg/stage]	[µg/stage]	[µg/stage]
Backup stage	<0.03	1.5	0.030	1.36	5.7	<dl< td=""><td>0.00007</td></dl<>	0.00007
1	0.03	<dl< td=""><td>0.007</td><td>0.27</td><td>2.4</td><td><dl< td=""><td>0.00008</td></dl<></td></dl<>	0.007	0.27	2.4	<dl< td=""><td>0.00008</td></dl<>	0.00008
2	0.06	<dl< td=""><td>0.007</td><td>0.21</td><td>2.2</td><td><dl< td=""><td>0.00005</td></dl<></td></dl<>	0.007	0.21	2.2	<dl< td=""><td>0.00005</td></dl<>	0.00005
3	0.11	0.04	0.023	0.07	1.5	0.00008	0.00003
4	0.17	<dl< td=""><td>0.004</td><td>0.28</td><td>5.9</td><td>0.00001</td><td>0.00002</td></dl<>	0.004	0.28	5.9	0.00001	0.00002
5	0.27	0.05	0.010	0.16	4.0	0.00001	0.00006
6	0.41	0.03	0.008	0.06	1.0	0.00001	0.00002
7	0.66	0.02	0.012	0.12	2.5	0.00004	0.00032
8	1.02	0.06	0.010	0.23	5.1	0.00001	<dl< td=""></dl<>
9	1.65	0.08	0.009	0.19	3.4	<dl< td=""><td>0.00002</td></dl<>	0.00002
10	2.52	0.10	0.015	0.25	4.4	<dl< td=""><td>0.00003</td></dl<>	0.00003
11	4.08	0.32	0.014	0.33	5.8	0.00001	0.00001
12	6.56	0.22	0.014	0.18	2.8	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Sum with b	olanks	2.42	0.136	3.69	46.7	0.00016	0.00071

Metal analysis corrected for blanks with and without Fe-FBC added 20mg/kg fuel blue: all sizes red: < 60 nm

	Fe
mg/kWh – ISO 8178	
Baseline w/o FBC	0.078
< 60 nm	0.023
Baseline with FBC	2.48
< 60 nm	1.34
with DPF and FBC	0.091
Penetration %	3.6
< 60nm	0.016
Penetration %	1.22


Particle Mass converted to Particle Number

Assuming spherical particles

- 1 Particle 100 nm has a mass of 10^{-15} g = 1 Femtogramm
- 1 Particle 20 nm has a mass of 10⁻¹⁷ g

	1mg / kWh	0.1mg / kWh
100 nm	10 ¹² / kWh	10 ¹¹ / kWh
20 nm	10 ¹⁴ / kWh	10 ¹³ / kWh

Compare to : EURO VI : $< 6 \times 10^{11}$ / kWh of > 23 nm

VERT-certified DPF

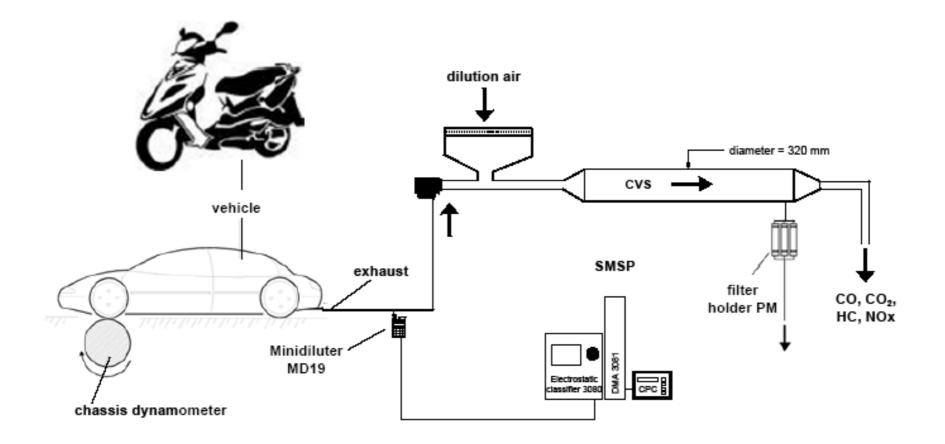
Penetration at the 8 operating points of the coated filter

→ Filtration is excellent even for metal oxide particles < 30 nm</p>

Filter-Ash of 3 DPF - an overall balance analysed after 1000 operation hours

%	Vehicle A + DOC (Pt)	Vehicle B Pt-coated	Vehicle C no catalyst
S	9.5	12.9	1.8
Са	11	17	4.5
Zn	4.7 → 0.2 mg/kWh	4.9	1.2
Fe	0.3	0.24	1.33
Cu	0.14	0.05	0.11
AI	1.0	0.1	0.3
Cr	0.12	0.03	0.15
Ni	0.08	0.002	0.03
Pt	0.005 → 200 ng/kWh	0.0003	0.00001

Petrol – Engines


- Particle Emissions of Petrol Engines were long neglected because mass is so small
- Size and number first adressed with EURO 5/6
- Substance is still not adressed

4 Vehicles selected

Vehicle Type	Car old	Motorbike old	Car new	Scooter new
Manufacturer/ brand	Renault R18	Honda 450 CBR	Nissan Qashqai	Piaggio
Engine Volume [cc]	2165	447	1997	124
	4 Cyl. 4 Stroke	2 Cyl. 4 Stroke	4 Cyl. 4 Stroke	1 Cyl. 4 Stroke
Engine RPM [1/min]	5000	8800	6000	8500
Rated power [kW]	79	24.7	104	11

Renault R18	Honda 450 CBR	Nissan Qashqai	Scooter Piaggio
Idling	Idling	Idling	Idling
• 120 min.	• 120 min.	• 120 min.	• 120 min.
50 km/h	50 km/h	50 km/h	50 km/h
• 20 min.	• 20 min.	• 20 min.	• 20 min.
NEDC	Euro 3	NEDC	Euro 3-C1
 1187 sec. 	 1568 sec 	 1187 sec 	 1170 sec
• 11.028 km	• 13.065 km	• 11.028 km	• 6.110 km
• 33.6 km/h	 30.0 km/h 	• 33.6 km/h	 18.8 km/h

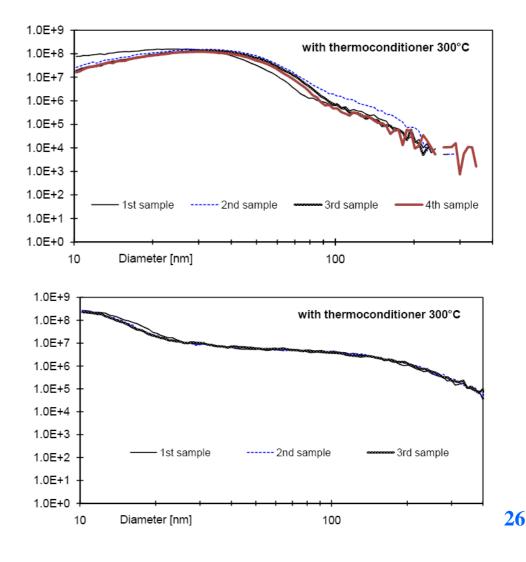
Test Set-up AFHB / Biel

Overall Particle Mass PM is very small

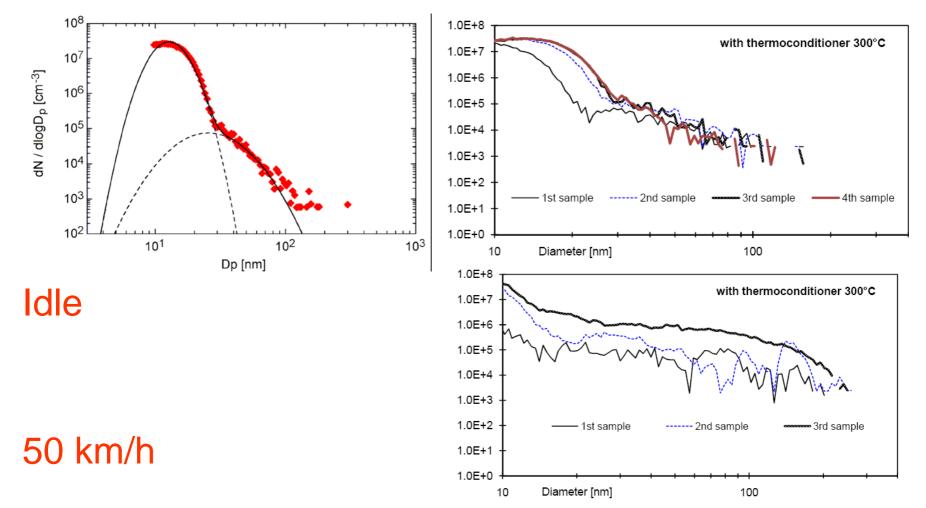
Vehicle	Renault R18 Honda 450 CBR		50 CBR	Nissan (Qashqai	Scooter Piaggio		
Cycle	NEDC	Idling	Euro 3	Idling	NEDC	Idling	Euro3-C1	Idling
Time [3]	3540	7200	4710	7200	3540	7200	3510	7200
PM total								
• mg/km	0.531		0.277		0.639		0.492	
• mg/hr		8.800		2.079		3.520		4.33

Diesel-Car:

Euro 3: PM < 50 mg/km

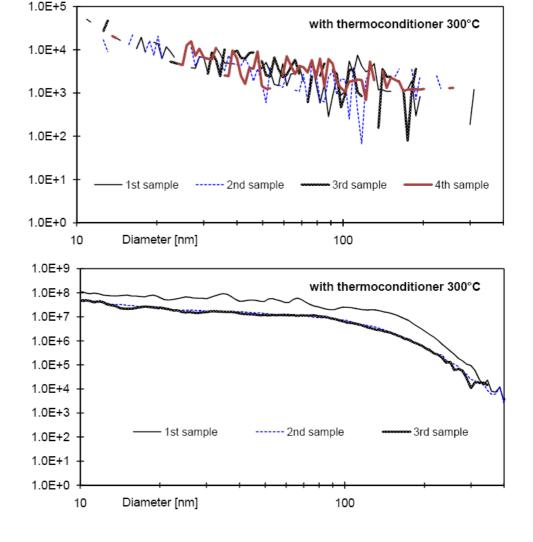

Euro 4: PM < 25 mg/km

Euro 6: PM < 10 mg/km ; PN < 6x10¹¹ #/km


Renault 18 (162'000 km) Size Distribution at Idle and 50 km/h

Idle

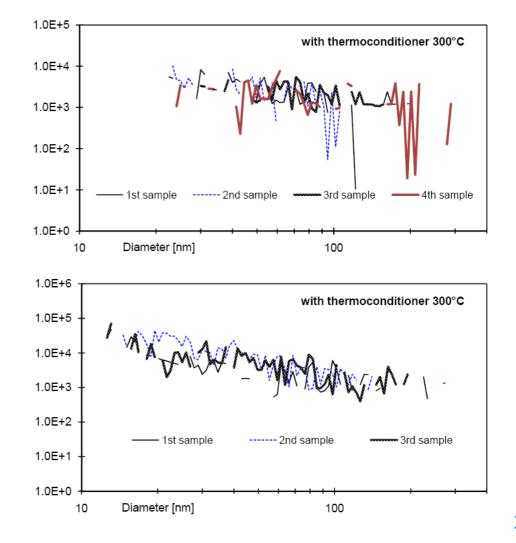
50 km/h



Honda 450 Motorbike (10'000 km) Size Distribution at Idle and 50 km/h

Piaggio Scooter (1000 km) Size Distribution at Idle and 50 km/h

Idle



50 km/h

Nissan Qashqai (25'000 km) Size Distribution at Idle and 50 km/h

50 km/h

Idle

Metal-Emissions of Petrol Engines unfortunaltely not size-specific

Vehicle	Renault R18		Honda 4	50 CBR	Nissan Q	ashqai	Scooter Piaggio	
Cycle	NEDC	Idling	Euro 3	Idling	NEDC	Idling	Euro 3-Cl	Idling
Tune (s)	3540	7200	4710	7200	3540	7200	3510	7200
Metal content	µg/100 kg	µg/hr	µg/100 kg	µg/hr	µg/100 kg	µg/hr	µg/100 kg	µg/hr
 Sulfur 	2.15	1.42	1.77	0.98	3.97	2.44	3.9	1.25
 Calcium 	448	195	375	205	393	216	815	176
 Zinc 	1234	500	965	616	1096	575	1445	488
 Magnesium 	36.8	16	31	22	39.7	26	71	16.5
 Iron 	20.6	6.6	10.3	5	25.4	5.8	21.1	5.1
Nickel	0.1	0.05	0.08	0.04	0.07	0.03	0.12	0.03
Cromium	0.53	0.17	0.48	0.22	0.52	0.30	0.85	0.20
 Copper 	0.2	0.08	0.15	0.06	1.77	0.05	0.25	0.09

not corrected for blanks

PN Emissions of Petrol Engines can be very high both overall and in the Metal Ash Peak and comparable to Diesel particle emissions

Vehicle		Renault R18		Honda 450 CBR		Nissan Qashqai		Piaggio		Diesel	
Cycle		50 km/h	Idling	50 km/h	Idling	50 km/h	Idling	50 km/h	Idling	Idling	
N _{total}	[P/cm ³]	4.1 · 10 ⁷	7.1 · 10 ⁷	2.2 · 10 ⁶	6.8 · 10 ⁶	9.1 · 10 ³	1.86 י 10 ³	3.6 · 10 ⁷	6.2 · 10 ³	1.5 י 10 ⁷	
N _{ash}	[P/cm ³]	3.8 · 10 ⁷	7.1 · 10 ⁷	n.d.	6.8 · 10 ⁶	n.d.	n.d.	n.d.	n.d.	1.4 · 10 ⁷	
N _{soot}	[P/cm ³]	3.1 · 10 ⁶	7.1 · 10 ⁴	n.d.	3.7 · 10 ⁴	n.d.	n.d.	n.d.	n.d.	8.6 · 10 ⁵	
D _{ash}	[nm]	7.9	24.4	n.d.	12.7	n.d.	n.d.	n.d.	n.d.	11.8	
D _{soot}	[nm]	69.6	131.6	n.d.	25.6	n.d.	n.d.	n.d.	n.d.	48.1	

Conclusions

- Internal combustion engines emit metal oxide particles from engine wear and lubrication oil
- metal oxides are probably more toxic than EC (soot)
- > PM can be 0.1-1 mg/km \rightarrow PN >10⁸ #/cc \rightarrow 10¹⁴ #/kWh
- Size around 20 nm, insoluble and toxic
- \rightarrow health concern is justified

Measures:

- deploy efficient Particle Filter Systems on all ICE
- reduce the metal content of the lubrication oil
- extend PN-measurement to particle sizes < 23 nm</p>