Calculating Benefits for Oblique Pole Side Impact Rulemaking

Susan Meyerson


National Highway Traffic Safety Administration

Department of Transportation

Bonn, Germany November 16-18, 2010

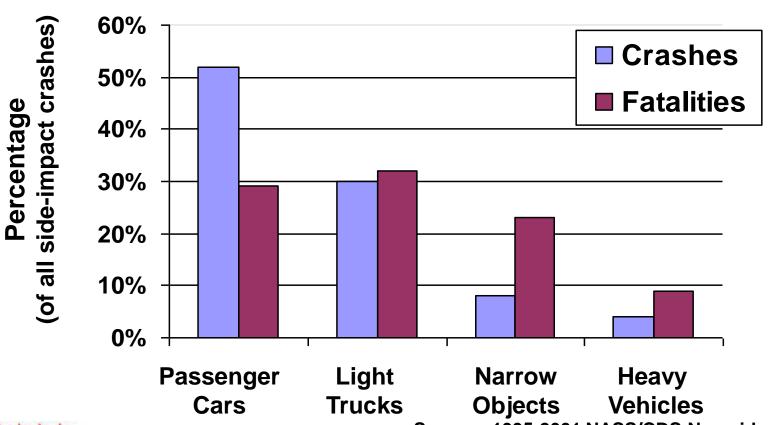
Process for Calculating Benefits

VEHICLE CRASHES

Type of NASS Data

- NASS National Automotive Sampling System
- Crashworthiness Data System (CDS):
 - Has detailed data on a representative, random sample of 4,000 5,000 tow-away crashes annually. Includes some with no injury, minor, serious and fatal injuries.
 - Trained crash investigators obtain data from crash site, vehicles involved, police report, and hospital records.

Use of NASS CDS Data


- NASS CDS data related to occupant in Side Impacts
- What we have in CDS:
 - Collision partner vehicle or fixed objects including pole or tree
 - Injured body location
 - Belt use
 - Complete & partial ejections
 - Degree of injury
 - Injured occupant size
 - Delta-V in side impacts

ANALYZE CRASHES

Distribution of Side-impact Crashes by Collision Partner

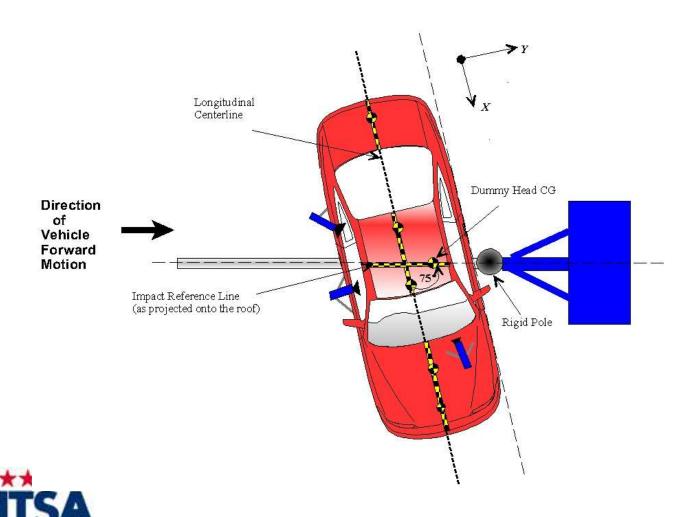
2000 – 2004 Annualized NASS CDS Data Used by Injured Body Region


Body	Vehicle-to-Pole/tree		Vehicle-to-vehicle		Total, %
Region	Injury**	Fatal	Injury**	Fatal	
Head	266	298	903	651	25.8%
Chest	419	46	2,809	733	48.9%
Abdomen	0	0	128	146	3.3%
Pelvis	0	0	288	67	4.3%
Others	315	28	763	342	17.7%
Total	1,000	372	4,891	1,939	100.0%

EVALUATE CURRENT SAFETY REGULATIONS

FMVSS No. 214 MDB Dynamic Crash Test

DEVELOP NEW SAFETY REQUIREMENT



Why do we need a pole test?

- NASS CDS data show that head injuries are serious safety problem
 - However, current Moving Deformable Barrier does not adequately address this safety problem
 - With the pole test, vehicles would need to be equipped with a countermeasure to protect the head, chest, and pelvis areas

Oblique Pole Test

www.nhtsa.gov

Use of Dummies to Represent Occupants

- Drivers (females and elderly) 163 cm or less compromise ~25% of seriously or fatally injured drivers in narrow object side impacts*
- The 5th Female (150 cm) and 50th Male (175 cm) represent the range of occupants protected.
- Drivers less than 163 cm are best represented by the 5th Female dummy

Side impact test injury requirements

■Injury criteria

Body region	5 th female test dummy (SID-IIs)	50 th male test dummy (ES-2re)
Head	1,000 HIC	1,000 HIC
Chest	82 g lower spine acceleration	44 mm deflection
Abdomen	N/A	2.5 kN
Pelvis	5.5 kN	6.0 kN

How do manufacturers meet the pole test requirements?

Head requirement

Installed head air bags

■ Chest

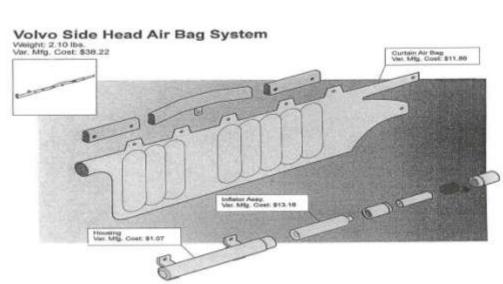
- Strengthen vehicle's side structure or/and
- Install thorax air bags

Abdomen

- Strengthen vehicle side structure or/and
- Install thorax air bags

■ Pelvis

Strengthen vehicle side structure

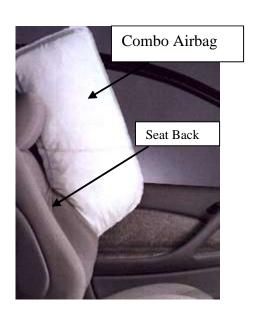



Air Bags Designed for Side Impacts

- **■**There are three types for head protection
 - Window Curtain
 - Tubing

www.nhtsa.gov

Combination – head and thorax protection

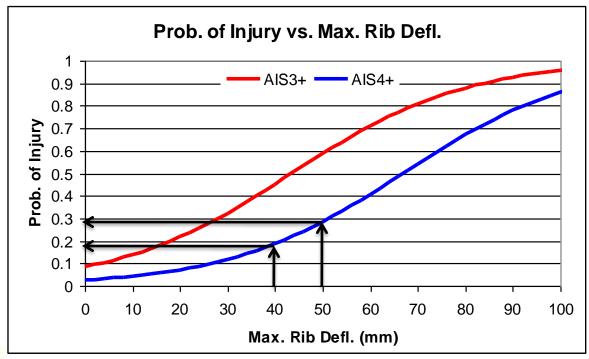


Air Bags Designed for Side Impacts (continued)

- ■There are two types for thorax protection
 - Thorax air bag
 - Combination air bag

ESTIMATE THE EFFECTIVENESS OF THE NEW SAFETY REQUIREMENT

Pole test results with and without side air bag

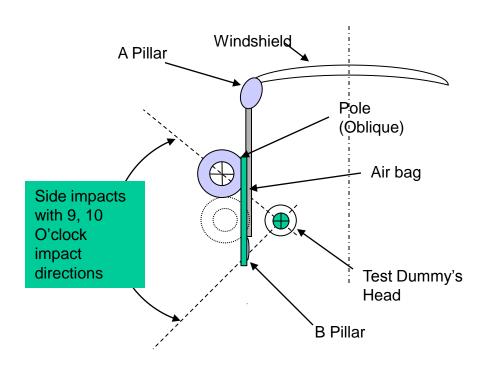

■Test results

Body region	5 th female test dummy		50 th male test dummy	
Side air bag	W/o	With	W/o	With
Head	11,534 HIC	508 HIC	14,292 HIC	504 HIC
Chest	114 g	63 g	41 mm	38 mm
Abdomen	N/A	N/A	3.7 kN	1.3 kN
Pelvis	7.8 kN	6.9 kN	2.5 kN	2.3 kN

Effectiveness of Side Air Bag

- Based on risk of injury
- For example, probability of AIS 3+ and AIS 4+ injury as function of maximum rib deflection of the 50th male test dummy

Characteristics of side air bag system meeting oblique pole test requirements


- Not necessarily effective in rollovers
 - No rollover sensors
- Relatively narrow range of operation
 - Lower range of 19 km/h and Upper range of 40 km/h
 - Based on side crash test results performed at different impact speeds
- Assumed side air bags are not wide enough to
 - Prevent complete ejections, and
 - Protect children from partial or complete ejections

Characteristics of side air bag system meeting oblique pole test requirements (continued)

- Effective for side impacts with 2, 3 O'clock and 9, 10 O'clock impact directions
 - Based on the test configuration

SAFETY BENEFITS

Impact of ESC on Benefits

- Develop adjustment factors based on
 - Portion of target population impacted by ESC
 - ESC Effectiveness rates
 - Percent of future on-road fleet equipped with ESC
- ESC effectiveness in single vehicle run-off-road crashes
 - 35% for passenger cars
 - 67% for SUVs
- Adjustment factors calculated for passenger cars and SUVs, then weighted based on percentage in fleet.
 - ESC estimated to prevent 41% of fatal crashes
 - ESC estimated to prevent 35% of serious injuries

Estimated benefits with side air bags

- Based on characteristics of side air bags, some side crashes were excluded from NASS data, such as:
 - Rollovers followed by side impacts
 - Delta-V's lower than 12 mph and higher than 25 mph
 - Complete ejections
 - Children
 - Occupants in rear seat
- Side air bag effectiveness:
 - Based on pole test results and injury curves
- Estimated benefits:
 - Apply the effectiveness to the target population
 - Estimated 311 lives and 361 serious injuries would be prevented when all light vehicles meet the test requirements

Thank You

References

FMVSS 214 – Final Regulatory Impact Analysis August 2007

For More Information, Please Contact

Ezana Wondimneh

ezana.wondimneh@dot.gov

Susan Meyerson

susan.meyerson@dot.gov

