Proposal for WLTC methodology and guidelines for in-use data collection

proposed by UK and Japan DHC group under GRPE/WLTP informal group

version 1 : 24 August 2009

(*) WLTC : Worldwide harmonized Light duty

driving <u>T</u>est <u>C</u>ycle

Contents

- 1. Purpose
- 2. Development of Test Cycle
 - 2.1. Overall Process
 - 2.2. Process of Test Cycle Development
- 3. Development of Weighting Factor Matrix
 - 3.1. Previous Studies
 - 3.2. Basic Concept of Weighting Factor
 - 3.3. Proposal for generating the Weighting Factor
 - 3.4. Image of the Weighting Factor Matrix
- 4. Guidelines for In-Use Data Collection
 - 4.1. Previous Studies
 - 4.2. Basic Concept of In-Use Data Collection
 - 4.3. Test Vehicle Selection
 - 4.4. Test Conditions
 - 4.5. Image of In-Use Data Collection Matrix
- 5. Development of Gear Shift Points

1. Purpose

Develop the world wide harmonized light duty test cycle, which will represent typical driving conditions around the world

 ✓ Define the methodology to develop the common test cycle and gear shift prescription based on the in-use driving data

✓ Provide guideline for in-use data collection

2.1. Overall Process

2.2.1. Test Cycle Development - Step1 -

Common test cycle is developed based on collected in-use data and weighting factor.

2.2.3. Test Cycle Development - Step3 -

Develop the Unified Speed-Acceleration Distribution

Short trip average speed distribution, Idling length distribution

2.2.5. Test Cycle Development - Step5 -

Contents

- 1. Purpose
- 2. Development of Test Cycle
 - 2.1. Overall Process
 - 2.2. Process of Test Cycle Development
- 3. Development of Weighting Factor Matrix
 - 3.1. Previous Studies
 - 3.2. Basic Concept of Weighting Factor
 - 3.3. Proposal for generating the Weighting Factor
 - 3.4. Image of the Weighting Factor Matrix
- 4. Guideline for In-Use Data Collection
 - 4.1. Previous Studies
 - 4.2. Basic Concept of In-Use Data Collection
 - 4.3. Test Vehicle Selection
 - 4.4. Test Conditions
 - 4.5. Image of In-Use Data Collection Matrix
- 5. Development of Gear Shift Points

3.1. Weighting Factor Matrix- Previous Studies

	Wei	ghting facto	or (Collection	n of Statisti	cs on ve	hicle use)
	Country	Road Type	Vehicle category (Specification)	Power to mass ratio	Matrix	Basic data for weighting factor
WHDC	EU USA JPN	Urban Rural Motorway	rigid trucks trailer trucks buses	3 classes 3 classes 1 class	65	driving duration
WMTC	EU USA JPN China		Engine Displacement 1 : ~ 150 2 : 150 ~ 450 3 : 450 ~		40	driving distance
JC08	JPN	Urban +Rural Motorway				average vehicle speed driving duration

3.2. Basic Concept on Weighting Factor

Weighting Factor Matrix

Statistical data	:	Traffic volume(driving duration, distance), vehicle volume
Countries, Region	:	Europe, U.S.A., Asia, etc
Type of roads	:	Urban, Rural, Motorway, etc
Vehicle Categories	:	Passenger cars, Light goods vehicles Mini Buses, etc
Days, Time	:	Weekday/Weekend, On/Off peak, etc
➤ Method of W.F.	:	Driving duration or Driving distance
➤ others		

3.3.2. Development of Weighting Factor - Comparison of 2 Methods

	Weighting Factor using time (duration)	Weighting Factor using distance
Advantage	 Same dimension can be applied to all factors (road type, driving conditions, etc) and to in-use data processing (speed-acceleration distribution, short trip/idle, etc) Provides more flexibility to adjust the cycle duration when developing the drive cycle 	•Simpler to develop the weighting matrix
Dis- advantage	 Requires more resources to generate weighting factor matrix Potential difficulties in obtaining the required statistical data from data collecting CPs 	 Inconsistent process to analyze idling periods and short trips Difficulty when modifying the test cycle

3.3.4. Development of weighting factor

Calculate total driving duration using statistical vehicle usage and/or traffic census, then find the driving time share ratio of each region Method 1: Using traffic census ·Basic data : Traffic census classified by country ·Necessary data: Total road network and traffic volume classified by vehicle categories / road types, Average vehicle speed classified by road types ·Advantages : More precise due to based on actual survey ·Disadvantages : Traffic census information may vary by region due to difference in vehicle categories / road types etc. -> Hard to compare equally Method 2: Using vehicle statistical data ·Basic data : Statistical vehicle usage of each country (WHDC method) ·Necessary data : The number of registered vehicles, Annual driving distance, Average vehicle speed on each road type, Vehicle specification information ·Advantages : Easier to obtain same type of information from each country ·Disadvantages : Include assumption, less precise (*) If lack of data, calculation could be made using data that is in similar condition.

3.4. Weighting Factor Matrix- Final Image

					τ	Jrban						Rural	Motorway
Vehicle Cate	gory		China			Europe			Japan	South America	U.S.A	•••	•••
А	В	Weekday On peak	Weekday Off peak	Weekend	Weekday On peak	Weekday Off peak	Weekend						
			(Total drivi	na dur	otion	5						
					ing uur	ation							
				shall be di	vided in	nto per							
				vehicle typ	be, road	e, road type				•••	•••	•••	••••
	Class I		l	and drivin	g hours		J	•••	••••	•••	•••		•••
	Chass I			\geq	5 u I	I	ſ						
												·····	
Passenger cars													
	Close II												
	(if neces	sary)											
Trucks	•••			•••	•••		•••	••••	••••	•••	•••	••••	••••
	B : sub c	ategorized to	o more speci	fic vehicle c	ategory	and/or e	ngine dis	placeme	ent and/o	r GVW	, etc		

21

Contents

- 1. Purpose
- 2. Development of Test Cycle
 - 2.1. Overall Process
 - 2.2. Process of Test Cycle Development
- 3. Development of Weighting Factor Matrix
 - 3.1. Previous Studies
 - 3.2. Basic Concept of Weighting Factor
 - 3.3. Proposal for generating the Weighting Factor
 - 3.4. Image of the Weighting Factor Matrix
- 4. Guideline for In-Use Data Collection
 - 4.1. Previous Studies
 - 4.2. Basic Concept of In-Use Data Collection
 - 4.3. Test Vehicle Selection
 - 4.4. Test Conditions
 - 4.5. Image of In-Use Data Collection Matrix
- 5. Development of Gear Shift Points

4.1. In-use Data Collection - Previous Studies

				In-use data co	ollection				
	Country	Cities	# of Vehicles	Vehicle Category	# of vehicles	driving duration	driving distance (km)	Type of roads	# of drivers
	EU		65	Light trucks GVW < 7.5t	9	durution	2213	Urban	unvers
	USA			Rigid trucks GVW > 7.5t, incl. special purpose trucks and coaches	21		13428	Rural	
WHDC	JPN			Trailer trucks	18 11		56324 2473	Motorway	
							Total 74400 Ave 1145		
WMTC	EU USA JPN China (India)	Paris Pisa Amsterdam Frankfurt Mandeure Munich Biel Darmstadt Birminggham Tokyo Ji Nan	23 7 9 1	49cc - 1500 cc		518	27224	Urban Rural Motorway	
JC08	JPN	Tokyo Osaka	10	Passenger Cars Light truck 1 Light truck 2	4 1 5	245 64	4937 3450	Urban/Rural Motorway	
JC08 (Shift point)	JPN	Tokyo	11	Passenger Cars (5MT) Passenger Cars (6MT) Light truck 1 (5MT) Light truck 2 (5MT) Light truck 3 (5MT)	4 1 2 1 3			Urban/Rural Motorway	36

Data Collection –	
Regions	
✓Countries, Regions	: Europe, U.S.A, Japan, China, India, etc
Vehicle Selection	
✓ Vehicle Categories	: M1/N1, LDV/LDT, Passenger Cars/Trucks
✓ Vehicle Performance	ce: Power to mass ratio, Engine swept volume, GVW,etc
Driving Conditions	
✓Driving Condition	: Traffic flow, Free, Speed limit, etc
✓ Vehicle Condition	: Weight (Pay load), Warmed up
✓Driver	: gender, age, experience, etc
✓Driving Route	: Definition, Altitude, Gradient, etc
✓Days, Hours	: Season, Day of the week, Time
\checkmark Amounts of data	: distance, time, etc

4.3.1. Test Vehicle Selection

The following criteria should be considered when selecting test vehicles for in-use data collection to ensure representation of the regional market.

4.3.4. Vehicle Selection – JC08 Development

In case of JC08 development, test vehicles were randomly selected in each category.

4.4.1. Test Conditions

Driving Behavior

✓ Follow the traffic flow without unique behavior

Vehicle Conditions

✓ Warm up condition : <u>preferable to test after warming up</u>

✓ Vehicle weight :<u>unloaded condition</u>

(driver + measurement equipment + operator) (record the actual weight)

4.4.2. Driver Selection

≻ Gender

✓ Mixture of male/female, - no need to mandate

≻ Age

✓ preferable at least one driver from three generations, (20's, 30's ~40's, 50's ~ 60's)

➤ Experience

✓ <u>have valid clean driver license</u>

4.4.3. Road Type

≻Defin	ition of road type			
	Urban	Rural	Motorway	
WHDC (define based on road type)	Roads in urban areas with a speed limit of 50 km/h or lower	Non motorways outside and inside urban areas, with a speed limit between 50 km/h and 80km/h	Roads specially constructed and controlled for fast motor traffic (in most cases with more than 2 lanes)	
WMTC (define based on collected data)	Vehicle Speed : ~ 60km/h : 80% or more 90km/h ~ : 0% and Max. speed =< 80km/h and Each Trip distance >= 1m	Vehicle Speed : ~ 60km/h : 70% or less 60 ~ 90km/h : 30% or more 90km/h ~ : 50% or less and Max. speed =< 110km/h	Vehicle Speed : ~ 60km/h : 20% or less 90km/h ~ : 50% or more	
Proposed WLTP	Paved roads in urban areas with a speed limit ≤50 km/hour (exclude mountain areas)	Paved non-motorways outside and inside urban areas with a speed limit between 50 and 80 or 100 km/hour (exclude mountain areas)	Paved motorways (multi-lane roads specifically constructed and controlled for fast traffic)	

4.4.6. Amount of Data to be Collected

< Criteria >

- Distance : Set upper & lower limit, Set only lower limit, no criteria
- Time Range : Set upper & lower limit, Set only lower limit, no criteria

< Previous Studies >

Mode Region		#of	Vehicle	Road		Driving Du	ration	Driving Distance				
	Vehicles	Categories	Twne	Total	Average	Average Duration	Total Distance	Average	Average Distance			
		V CILICICS	0	Type	Duration	Duration	(hrs/vehicle, road type, region)	(km)	Distance	(km/velatle, road type, region)		
WHDC	3	65	4	3	-	-		74400	1145	2067		
1009	1000 1	10	2	Urban/Rural	245	25	82	4937	494	1646		
1000	1		5	Motorway	64	б	21	3450	345	1150		
JC08	1	11	4	Urban/Rural	-	Weekdays	-	-	opprov. 2500	~ _ ~ `		
(Shift point)	1	11	4	Motorway	-	20days/vehicle	-	-	approx. 2000	-		
WMTC	4	40	3	3	518	13	14	27224	681	756		

Proposal

Minimum 1000km per each region&category&road type and per each transmission

4.4.7. Measurement Items and Methods

Measurement Items and Methods Measurement Sampling Necessity Measurement Methods Time Items Time MUST 10Hz 1 (1)ECU **(2)**GPS Speed Meter Vehicle Speed 2 MUST 1 3 Calculate from drive shaft speed (resolution: 0.1km/h) •Non-contact vehicle speed meter ·Additional wheel (1)ECU Recommend 2 Photoelectric Pick Up 3 **Engine Speed** 1 (MT:MUST) **③**Ignition Pulsation (4)Accelerometer (1)GPS+Pressure sensor, Road Grade 4 Recommend 1 Geographic information, etc (altitude) (1)ECU 5 **Clutch Signal** (2)Assume from engine speed Recommend 1 (3)Clutch Depression Switch

✓ Data Format : CSV

 \checkmark Take special care to minimize the noise level (5Hz LPF)

 \checkmark 1Hz data is acceptable, if it was already filtered

4.5.1. Data Collection Matrix

	Country Region	Road Type	Period of time	Driver (Age)	Vehicle Ca	ategory	Power to mass ratio	TM type	# of test vehicle			
# of cells	6	3	3	3	2	2	1	6	1			
Total cells		(3888) (=> 1944, practically)										
# of test vehicle in each region			-		(24) (=> 12, practically)							
Choices	China, Europe, India, Japan, S.A, U.S.A	Urban, Rural, Motorw ay	Weekday-On peak, Weekday-Off peak, Weekend	20's 30-40's, 50-60's,	Passenger cars Trucks	GVW, Engine swept volume, etc	Class I Class II Class III	AT or CVT (3MT) (4MT) 5MT 6MT (7MT)	1~			

> 24 different kind of test vehicles per region are needed

 \Rightarrow can be reduced to 12 vehicles (Manual transmission $6 \Rightarrow 3$)

➤ Total cell number: 3888 (=> 1944)

 \checkmark the number of regions * the number of road types * the number of measurement time range * the number of drivers * the number of vehicles

4.5.2. Image of Data Collection Matrix

Valiala Cat			Power to						Urb	an					Rural	Motorway
venicie Cat	egory	Transmission type		Driver (Age)		China		Europe		India	Japan	South America	U.S.A			
А	В	51	inuss rutio		Weekday On peak	Weekday Off peak	Weekend	Weekday On peak	Weekday Off peak	Weekend						
			Class 1	20's							•••	•••	•••	•••		•••
		AT·CVT	(Average)	30~40's		AL							•••			
			(Average)	50~60's		_					•••	•••	•••			•••
			Class 1	20's					\sim		•••	••••	•••	•••	•••	•••
		5MT	(Average)	<u>30~40's</u>							•••	•••		•••	•••	•••
	Class I		(niverage)	50~60's					4	. ~ ~	> 10	0.01			•••	•••
		0.07	Class 1 (Average)	20's		D1		— A	1 + 1	A2 =	<pre>2 [[</pre>)()()k	m –	•••	•••	•••
		6M1		<u>30~40's</u>	<u>.</u>	B1								•••	•••	•••
			(niverage)	50~60's							•••	•••	•••	•••		•••
			Class 1	20's				\searrow			***	• • •	•••	***		
Passenger			(Average)	30~40's							***	• • •	•••		•••	•••
i assenger				50~60 s			*****				•••		•••		•••	•••
cars		AT. OVT	Class 1 (Average)	20 \$		10					•••	•••	•••		•••	
		ALCVI		50~40's		A2										
				20%						\sim						
		5MT	Class 1	20.8						$ \land \land$						
		JIVII	(Average)	50 60's												
	Class II			20%												
		6MT	Class 1	20 s 30~40's		DO				- 1	DO	~ .	000			
		0111	(Average)	50~60's		D2			' \	3I +	B 2	≤ 1	()()()	km		
			<u> </u>	20's					, A							
			Class 1	30~40's												
			(Average)	50~60's												
Trucks	2	3	3	3				•••								

B : sub categorized to more specific vehicle category and/or engine displacement and/or GVW, etc

Contents

- 1. Purpose
- 2. Development of Test Cycle
 - 2.1. Overall Process
 - 2.2. Process of Test Cycle Development
- 3. Development of Weighting Factor Matrix
 - 3.1. Previous Studies
 - 3.2. Basic Concept of Weighting Factor
 - 3.3. Proposal for generating the Weighting Factor
 - 3.4. Image of the Weighting Factor Matrix
- 4. Guideline for In-Use Data Collection
 - 4.1. Previous Studies
 - 4.2. Basic Concept of In-Use Data Collection
 - 4.3. Test Vehicle Selection
 - 4.4. Test Conditions
 - 4.5. Image of In-Use Data Collection Matrix
- 5. Development of Gear Shift Points

5.1. Process of Gear Shift Point Development (ex. JC08 mode in Japan)

Developed gear shift points based on in-use survey to represent the real driving behavior during JC08 study.

5.3. Drive Train Coefficient(DTC)

5.4. Result of regression analysis

The 4 most important explanatory variables were selected by the stepwise regression.

ex.) Up Shift

D ²			Ex	planatory variat	ole		
R-	1	2	3	4	5	6	7
0.752	Speed						
0.815	Speed	Acceleration					
0.844	Speed	Acceleration	Normalized vehicle weight				
0.847	Speed	Acceleration	Normalized vehicle weight	DTC			
0.851	Speed	Acceleration	Normalized vehicle weight	DTC	Normalized vehicle weight of running order		
0.851	Speed	Acceleration	Normalized vehicle weight	DTC	Normalized vehicle weight of running order	Engine Speed @ Max. torque	
0.852	Speed	Acceleration	Normalized vehicle weight	DTC	Normalized vehicle weight of running order	Engine Speed @ Max. torque	Engine speed @ Max. power

y = DTC * G(x)

3

Gear Position G(x)

2

4

5

41

Vechile A Vehicle B

🔺 Vehicle C

5.5. Gear Shift Formula (ex. JC08 mode in Japan)

Annex 1. T4253H smoothing filter

► T4253H smoothing

(description in the SPSS calculation software)

The smoother starts with a running median of 4, which is centered by a running median of 2. It then resmoothes these values by applying a running median of 5, a running median of 3, and hanning (running weighted averages). Residuals are computed by subtracting the smoothed series from the original series. This whole process is then repeated on the computed residuals. Finally, the smoothed residuals are computed by subtracting the smoothed residuals are computed by subtracting the smoothed residuals are through the process. This is sometimes referred to as T4253H smoothing.

> For more detail : ftp://ftp.spss.com/pub/spss/statistics/spss/algorithms/create.pdf