

Worldwide Harmonized Heavy Duty Emissions Certification Procedure

58th GRPE, Geneva, 11 June 2009

WHDC

General Overview

- WHDC approval of document ECE/TRANS/WP.29/GRPE/10 achieved with respect to the following major elements
 - Option 1: New structure of § 6.3 (engine power) and new Annex 7
 - Option 5: PM measurement
 - New structure of § 7 (test procedures)
 - Introduction of analyzer drift correction
 - Provisions on crankcase gases
- WHDC could not reach agreement on the following aspects of Document ECE/TRANS/WP.29/GRPE/10
 - Option 2: USA disagreement with Annex 2
 - Options 3 and 4: test results not fully available, further discussion after GRPE 58 will be needed
 - Dilution air temperature

Option 1 – Principles

General engine installation

Engine to be tested only with the auxiliaries or equipment listed in Annex 7. Other auxiliaries/equipment should be removed.

> Auxiliaries/equipment required for the emissions test

If auxiliaries/equipment required for the test are not fitted, their power shall be subtracted from engine power

> Auxiliaries/equipment not required for the emissions test

If auxiliaries/equipment not required for the test are fitted, their power may be added to engine power

Calculation of reference and actual cycle work must take into account auxiliaries/equipment power, if these are not fitted according to the list of Annex 7

Option 2 - Reference Fuel

- Introduction of average reference fuel that covers national reference fuel specifications (Annex 2) is not supported by EPA
- Possible alternatives to be decided by GRPE
 - go back to original gtr with 3 reference fuels (USA, EU, Japan)
 - widen specs of Annex 4 and allow CP's to apply tighter specs
- > Test results on engine 2 (US07 engine) were presented by JRC
- Test results of SwRI program (US10 like engine) were presented by EMA
- Overall, influence of fuel on emissions was demonstrated to a more or lesser degree (depending on engine technology), which would not preclude acceptance of average reference fuel

Morning			l A	Differe		
Average	Stdev	CVar	Average	Stdev	CVar	nce
0.119	0.0176	14.7%	0.151	0.0043	2.9%	0.031
0.190	0.0129	6.8%	0.135	0.0145	10.8%	0.055
0.095	0.0039	4.1%	0.148	0.0075	5.0%	0.053

	EU	U.S.	
Day 1	0.119	0.151	
Day 2	0.135	0.190	
Day 3	0.095	0.148	
Average	0.117	0.163	
Overall Stdev	0.0208	0.0218	
Overall Cvar	18%	13%	
Final Diffe	0.047		

Emissions with US reference fuel are higher by about 30%

ECE - GRPE

WHDC

ECE - GRPE WHDC

UNITED NATIONS

Option 2 – JRC Results/Engine 2

Emissions with US reference fuel slightly higher for NOx, very similar for PM

Option 3 – Hot Soak Period

- WP.29/AC.3 had agreed to exclude options 3 (hot soak period) and 4 (cold start weighting factor) from the current mandate
- Automotive industry (EMA/ACEA/JAMA) offered to EPA a test program with 4 engines on soak period in order to find solutions to option 3
- OICA indicated acceptance of the 14% cold start weighting factor in case of a compromise solution on option 3 (soak period)
- Test results of 2 engines were presented at 28th WHDC meeting
- Fest results of the remaining engines are not available for GRPE 58
- WHDC is therefore asking GRPE to extend the timeline for further discussions
- Final solution might only be taken at November 2009 WP.29

WHDC

Option 3 – EMA/SwRI Results

	Cold	Hot 1	Hot 2	Hot 3	Hot 4	Hot 5	Hot 6	Hot 7	Hot 8
Soak	Length	10-min	20-min	10-min	20-min	10-min	20-min	10-min	20-min
Day 1	0.628	0.145	0.156	0.099	0.131	0.090	0.119	0.079	0.115
Soak	Length	20-min	10-min	20-min	10-min	20-min	10-min	20-min	10-min
Day 2	0.735	0.141	0.103	0.107	0.094	0.112	0.083	0.091	0.042
		10-min	0.092						
		20-min	0.121	0.030					

- Hot-start conversion (1.27 g/hp-hr NOx Engine-out)
 - 10-min soak = 93 %
 - 20-min soak = 90 %

UNITED NATIONS

ECE - GRPE WHDC

Option 3 – DDC Results

UNITED NATIONS

Option 5 – PM Measurement

9.4.4.1. Filter specification

All filter types shall have a 0.3 μ m DOP (di-octylphthalate) collection efficiency of at least 99 per cent. The filter material shall be either:

- (a) fluorocarbon (PTFE) coated glass fiber, or
- (b) fluorocarbon (PTFE) membrane.
- 9.4.4.2. Filter size

The filter shall be circular with a nominal diameter of 47 mm (tolerance of 46.50 ± 0.6 mm) and an exposed diameter (filter stain diameter) of at least 38 mm.

Comments and Corrigenda

- Corrigenda approved by WHDC
 - EMA: correction to table 4
 - OICA: correction of references
- Proposal from Poland approved by WHDC
 - more accurate formulae for CH4 and NMHC calculation
 - correction of NMHC u value in tables 5 and 6
- > No further comments received

UNITED NATIONS

ECE - GRPE WHDC

NMHC/CH4 Calculation

The following formulae, which take the methane response factor into account, are proposed by Poland

Accurate formulae for calculation of the NMHC concentration

$$\frac{c_{HCW/O}^{S} \times (1 - E_{M}) - c_{HCW}^{S}}{E_{E} - E_{M}} -$$
(b)

$$\frac{(c_{HCW/O}^{s}) \times (1 - E_{M}) - c_{HCW}^{s} \times R_{f} \times (1 - E_{M})}{E_{F} - E_{M}} - (c)$$

$$\frac{c_{HCW/O}^{S} \times (1 - E_{M}) - c_{HCW}^{S} \times R_{f}}{E_{E} - E_{M}}$$
 - (d)

Formula for calculation of methane concentration

$$\frac{c_{HCW}^{s} - c_{HCW/O}^{s} \times (1 - E_{E})}{R_{f} \times (E_{E} - E_{M})} \quad \text{- derived}$$

$$\frac{c_{HCW}^{S} - c_{HCW/O}^{S} \times (1 - E_{E})}{E_{E} - E_{M}} - \text{GTR No. 4}$$

 C_{HCW}^{3} - R.83.06

Summary

- WHDC in conjunction with OCE is a major step forward for effectively controlling emissions from heavy duty vehicles
- Options 1 and 5 are solved
- Option 2 could not be solved by WHDC; two alternatives are presented to GRPE for discussion
- Option 3 (and 4) test results are not completely available; extension of timeline is requested for solving these 2 options
- GRPE approval is asked for
 - the proposed corrigenda
 - for introduction of more accurate NMHC/CH4 formulae proposed by Poland
- GRPE is asked to disband the informal group on WHDC, which has completed its mandate after 12 years of work and 28 meetings
- The WHDC group especially appreciates Dr. Cornelis Havenith, former chairman and mastermind of the WHDC process, for his contribution to global harmonization
- Chairman and secretary would like to thank all members of the group for their contributions to the success of this ambitious program