Transmitted by the expert from the JRC of the European Commission

Informal document No. GRPE-58-11
(58th GRPE, 8-12 June 2009, agenda item 5)

CORRIGENDA

Working document ECE/TRANS/WP.29/GRPE/2009/16

Proposal for draft global technical regulation concerning the test procedure for compressionignition (C.I.) engines to be installed in agricultural and forestry tractors and in non-road mobile machinery with regard to the emissions of pollutants by the engine

Submitted by the expert from the European Commission

Working document ECE/TRANS/WP.29/GRPE/2009/16 as deposited at GRPE secretariat on the 20 March 2009 and released 1 April 2009 with changes by the GRPE secretariat.
http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/grpedoc_2009.html

Part A and part B up to Annex 6 - Corrigendum

\#	WHERE	ERRATA	CORRIGE
1	Short Title	EXHAUST EMISSIONS TEST PROTOCOL OF NON-ROAD MOBILE MACHINERY	EMISSIONS TEST PROTOCOL OF NON-ROAD MOBILE MACHINERY ENGINES
2	A.STATEMENT OF TECHNICAL RATIONALE AND JUSTIFICATION; 1.TECHNICAL AND ECONOMIC FEASIBILITY; Paragraph 7	Deposited text: The guidance document has no legal status, it does not introduce any additional requirements... in GRPE/2009/16: The guidance document has no legal status as it does not introduce any additional requirements...	The guidance document has no legal status and it does not introduce any additional requirements ... [in order to maintain agreed content]
3	A. STATEMENT OF TECHNICAL RATIONALE AND JUSTIFICATION; 3. POTENTIAL COST EFFECTIVENESS; Paragraph 11	belive [incorrect spelling]	believe
4	page 1, footnote	wrong format ${ }^{1}$	1/
5	7.8.3.4.	Points with negative torque values have to be accounted for as zero work. [sentence mistakenly deleted]	[reintroduce] Points with negative torque values have to be accounted for as zero work.
6	Table 7.3, second column	```Conditions (\(n=\) engine speed, \(T=\) torque) \(n_{\text {ref }}=0\) per cent and \(T_{\text {ref }}=0\) per cent and```	```Conditions (\(n=\) engine speed, \(T=\) torque) \(n_{\text {ref }}=0\) per cent and \(T_{\text {ref }}=0\) per cent and```

		$T_{\text {act }}>\left(T_{\text {ref }}-0.02 T_{\text {maxmappedtorque }}\right)$ and $T_{\text {act }}<\left(T_{\text {ref }}+0.02 T_{\text {maxmappedtorque }}\right)$ $n_{\text {act }} \leq 1.02 n_{\text {ref }}$ and $T_{\text {act }}>T_{\text {ref }}$ and $n_{\text {act }}>n_{\text {ref }}$ and $T_{\text {act }} \leq T_{\text {ref }}$ and $\overline{n_{\mathrm{act}}}>1.02 n_{\mathrm{ref}} \text { and } T_{\text {ref }}<T_{\text {act }} \leq\left(T_{\text {ref }}+0.02\right.$ $T_{\text {maxmappedtorque }}$) $n_{\text {act }}<n_{\text {ref }}$ and $T_{\text {act }} \geq T_{\text {ref }}$ and $\overline{n_{\text {act }}} \geq 0.98 n_{\text {ref }} \text { and } T_{\text {act }}<T_{\text {ref }}$ and $\overline{n_{\text {act }}}<0.98 n_{\text {ref }} \text { and } T_{\text {ref }}>T_{\text {act }} \geq\left(T_{\text {ref }}-0.02\right.$ $T_{\text {maxmappedtorque }}$) [4 and have to be replaced by or]	$T_{\text {act }}>\left(T_{\text {ref }}-0.02 T_{\text {maxmappedtorque }}\right)$ and $T_{\text {act }}<\left(T_{\text {ref }}+0.02 T_{\text {maxmappedtorque }}\right)$ $n_{\text {act }} \leq 1.02 n_{\text {ref }}$ and $T_{\text {act }}>T_{\text {ref }}$ 아 $n_{\text {act }}>n_{\text {ref }}$ and $T_{\text {act }} \leq T_{\text {ref }}$ or $\bar{n}_{\text {act }}>1.02 n_{\text {ref }}$ and $T_{\text {ref }}<T_{\text {act }} \leq\left(T_{\text {ref }}+0.02\right.$ $\left.T_{\text {maxmappedtorque }}\right)$ $n_{\text {act }}<n_{\text {ref }}$ and $T_{\text {act }} \geq T_{\text {ref }}$ or $\bar{n}_{\text {act }} \geq 0.98 n_{\text {ref }}$ and $T_{\text {act }}<T_{\text {ref }}$ or $n_{\text {act }}<0.98 n_{\text {ref }}$ and $T_{\text {ref }}>T_{\text {act }} \geq\left(T_{\text {ref }}-0.02\right.$ $T_{\text {maxmappedtorque }}$
7	8.1.10.2.4	wrong subdivision in i , ii, iii; editor introduced subdivision where none should be	delete sub division
8	9.2.2	shall be maintained within one of the following ranges(option): (i) between 293 and $303 \mathrm{~K}\left(20\right.$ and $\left.30^{\circ} \mathrm{C}\right)$ or (ii) between 293 and $325 \mathrm{~K}\left(20\right.$ to $\left.52^{\circ} \mathrm{C}\right)$ The range shall be selected by the Contracting Party. [the half sentence 'in close proximity to the entrance into the dilution tunnel' was lost copying the text from 9.2.3.2 during its introduction by the Editorial Committee]	shall be maintained within one of the following ranges (option): (a) between 293 and $303 \mathrm{~K}\left(20\right.$ and $\left.30^{\circ} \mathrm{C}\right)$ or (b) between 293 and $325 \mathrm{~K}\left(20\right.$ to $52^{\circ} \mathrm{C}$) in close proximity to the entrance into the dilution tunnel. The range shall be selected by the Contracting Party. use missing half sentence from this paragraph 9.2.3.2
9	A.2.4. (b)	...that the $\underline{\underline{\sigma}}_{i}$ are the errors	...that the ε_{i} are the errors

Annex A. 7 - Corrigendum

$\#$	WHERE	ERRATA	CORRIGE
1	Title Annex 7	Emission molar based calculation	Molar based emission calculation
2	Para A.7.0.1. footnote (2) 2nd line	$x_{\text {dil }}$	$x_{\text {dilexh }}$
3	A.7.0.1. footnote (2) 3rd line	$x_{\text {dil }}$	$x_{\text {dilexh }}$
4	Eq. (A.7-3)	$x_{\mathrm{H}_{2} \mathrm{O}}=\frac{p_{\mathrm{H} 2 \mathrm{O}}}{p_{\text {abs }}}$	$x_{\mathrm{H} 2 \mathrm{O}}=\frac{p_{\mathrm{HzO}}}{p_{\text {abs }}}$

13	Legend Eq. (A.7-30)	$\dot{n}_{\text {exhwet, } i}$	$n_{\text {exhi }}$
14	Legend Eq. (A.7-30)	$\begin{aligned} & x_{\text {gaswet, } I}=\text { instantaneous generic gas molar } \\ & \text { concentration } \end{aligned}$	$x_{\text {gasi }}=$ instantaneous generic gas molar concentration on a wet basis
15	Eq. (A.7-31)	$m_{\mathrm{gas}}=M_{\mathrm{gas}} \cdot \overline{\dot{n}}_{\mathrm{exhwet}} \cdot \bar{x}_{\mathrm{gaswet}} \cdot t_{\mathrm{cycle}}$	$m_{\text {gas }}=M_{\text {gas }} \cdot \dot{n}_{\text {exh }} \cdot \overline{\mathrm{g}}_{\text {gas }} \cdot \Delta t$
16	Legend Eq. (A.7-31)	$\overline{\dot{n}}_{\text {exhwet }}=$ mean exhaust gas molar flow rate on a wet	$\dot{n}_{\text {exh }}=$ exhaust gas molar flow rate on a wet basis
17	Legend Eq. (A.7-31)	$\bar{X}_{\text {gaswet }}=$ mean gaseous emission molar fraction	$\bar{\chi}_{\text {gas }}=$ mean gaseous emission molar fraction on a wet basis
18	Legend Eq. (A.7-31)	$t_{\text {cycle }}=$ test time interval	$\Delta t=$ time duration of test interval
19	Eq. (A.7-32)	$m_{\mathrm{gas}}=\frac{1}{f} \cdot M_{\mathrm{gas}} \cdot \bar{x}_{\text {gaswet }} \cdot \sum_{i=1}^{\mathrm{N}} \dot{n}_{\text {exhwet }, i}$	$m_{\mathrm{gas}}=\frac{1}{f} \cdot M_{\mathrm{gas}} \cdot \bar{x}_{\mathrm{gas}} \cdot \sum_{i=1}^{\mathrm{N}} \dot{n}_{\mathrm{exhi}}$
20	Legend Eq. (A.7-32)	$\dot{n}_{\text {exhwet, } i}$	$n_{\text {exhi }}$
21	Legend Eq. (A.7-32)	$\bar{X}_{\text {gaswet }}=$ mean gaseous emission molar fraction	$\bar{x}_{\text {gas }}=$ mean gaseous emission molar fraction on a wet basis
22	Para A.7.3.2. 3rd line	$\chi_{\text {gaswet }}$	$\chi_{\text {gas }}$
23	Eq. (A.7-33)	$x_{\text {gasdry }}=\frac{X_{\text {gaswet }}}{1-x_{\mathrm{H} 2 \mathrm{O}}}$	$x_{\text {gasdry }}=\frac{x_{\text {gas }}}{1-x_{\mathrm{H} 2 \mathrm{O}}}$
24	Eq. (A.7-34)	$x_{\text {gaswet }}=\frac{x_{\text {gasdry }}}{1+x_{\text {H2Odry }}}$	$x_{\text {gas }}=\frac{x_{\text {gasdry }}}{1+x_{\text {H2Odry }}}$
25	Legend Eq. (A.7-34)	$\chi_{\text {H2O,dry }}$	$\chi_{\text {H2Odry }}$
26	Eq. (see A.7-29)	See above errata of Eq. (A.7-29)	See above corrige of Eq. (A.7-29)
27	Eq. (see A.7-31)	See above errata of Eq. (A.7-31)	See above corrige of Eq. (A.7-31)
28	Eq. (see A.7-32)	See above errata of Eq. (A.7-32)	See above corrige of Eq. (A.7-32)
29	A.7.4..4.1.(a):	Changing exhaust flow rate shall be extracted. [the first line of the paragraph has been lost while editing]	If a batch sample from a changing exhaust flow rate is collected, a sample proportional to the changing exhaust flow rate shall be extracted.
30	Eq. (A.7-45)	$m_{\text {PM }}=\bar{M}_{\text {PM }} \cdot \bar{n} \cdot t_{\text {cycle }}$	$m_{\text {PM }}=\bar{M}_{\text {PM }} \cdot \dot{n} \cdot \Delta t$

31	Legend Eq. (A.7-45)	$\bar{n}_{\mathrm{i}}=$ mean exhaust molar flow rate	$\dot{n}=$ exhaust molar flow rate
32	Legend Eq. (A.7-45)	$t_{\text {cycle }}=$ test interval	$\Delta t=$ time duration of test interval
33	Legend eq. (A.7-46): $D R 2^{\text {nd }}$ line	$m_{\text {dil }}\left(D R=m / m_{\text {dil }}\right)$	$m_{\text {dilexh }}\left(D R=m / m_{\text {dilexh }}\right)$
34	Legend Eq. (A.7-46): $D R 2^{\text {nd }}$ line	$x_{\text {dil }}$	$x_{\text {dilexh }}$
35	Eq. (A.7-47)	$D R=\frac{1}{1-x_{\text {dil }}}$	$D R=\frac{1}{1-x_{\text {dillexh }}}$
36	A.7.7.1. and A.7.7.2.	A.7.7.1. and A.7.7.2 [incorrect numbering]	replace numbering by A.7.6.4. and A.7.6.5.
37	A.7.8.1. to A.7.8.4.	A.7.8.1. to A.7.8.4. [incorrect numbering]	replace numbering by A.7.7.1. and A.7.7.4.

Annex A. 8 - Corrigendum

\#	WHERE	ERRATA	CORRIGE
1	Eq. (A.8-1)	$c_{\mathrm{NMHC}}=\frac{c_{\mathrm{HC}(\mathrm{w} / \mathrm{Cutute})}\left(1-E_{\mathrm{CH} 4}\right)-c_{\mathrm{HC}(\text { w/ Cutter })}}{E_{\mathrm{C} 2 \mathrm{H} 6}-E_{\mathrm{CH} 4}}$	$c_{\mathrm{NMHC}}=\frac{c_{\mathrm{HC}(\mathrm{w} / \mathrm{NMC})}-c_{\mathrm{HC}(\mathrm{w} / \mathrm{NMC})} \cdot\left(1-E_{\mathrm{CH} 4}\right)}{E_{\mathrm{C} 2 \mathrm{H} 6}-E_{\mathrm{CH} 4}}$
2	Eq. (A.8-2)	$c_{\mathrm{CH} 4}=\frac{c_{\mathrm{HC}(\mathrm{w} / \mathrm{Cuter})}-c_{\mathrm{HC}(\mathrm{w} / \mathrm{Cuter})} \cdot\left(1-E_{\mathrm{C} 2 \mathrm{H} 6}\right)}{E_{\mathrm{C} 2 \mathrm{H} 6}-E_{\mathrm{CH} 4}}$	$c_{\mathrm{CH} 4}=\frac{c_{\mathrm{HC}(\mathrm{w} / \mathrm{NMC})}-c_{\mathrm{HC}(\mathrm{w} / \mathrm{NMC})} \cdot\left(1-E_{\mathrm{C} 2 \mathrm{H} 6}\right)}{E_{\mathrm{C} 2 \mathrm{H} 6}-E_{\mathrm{CH} 4}}$
3	Eq. (A.8-22)	$f_{\mathrm{c}}=0.5441 \cdot\left(c_{\mathrm{CO2d}}-c_{\mathrm{CO2d}}\right)+\frac{c_{\mathrm{COd}}}{18,522}+\frac{c_{\mathrm{HCw}}}{17,355}$	$f_{\mathrm{c}}=0.5441 \cdot\left(c_{\mathrm{CO2d}}-c_{\mathrm{CO2d,a}}\right)+\frac{c_{\mathrm{COd}}}{18522}+\frac{c_{\mathrm{HC}}}{17355}$
4	$\begin{aligned} & \text { Legend Eq. } \\ & \text { (A.8-22) } \end{aligned}$	$c_{\text {CO2ad }}$	$c_{\text {CO2d,a }}$
5	Eq. (A.8-38)	$m_{\mathrm{ed}}=\frac{1.293 \cdot t \cdot K_{\mathrm{V}} \cdot p_{\mathrm{P}}}{T^{0.5}}$	$m_{\mathrm{ed}}=\frac{1.293 \cdot t \cdot K_{\mathrm{V}} \cdot p_{\mathrm{p}}}{T^{0.5}}$
6	Legend Eq. (A.8-38)	$p_{\text {P }}$	p_{p}
7	Eq. (A.8-39)	$m_{\mathrm{ed}}=1.293 \cdot V_{0} \cdot n_{\mathrm{P}} \cdot \frac{p_{\mathrm{P}}}{101.3} \cdot \frac{273}{T}$	$m_{e d}=1.293 \cdot V_{0} \cdot n_{\mathrm{p}} \cdot \frac{p_{\mathrm{p}}}{101.3} \cdot \frac{273}{T}$
8	Legend Eq. (A.8-39)	$p_{\text {P }}$	p_{p}

9	Eq. (A.8-40)	$m_{\text {ed }}=1.293 \cdot q_{\text {ssv }} \cdot \Delta t$	$m_{\text {ed }}=1.293 \cdot q_{\text {VSSV }} \cdot \Delta t$
10	Eq. (A.8-41)	$q_{\text {SSV }}=A_{0} d_{\mathrm{v}}{ }^{2} C_{\mathrm{d}} p_{\mathrm{P}} \sqrt{\left[\frac{1}{T}\left(r_{\mathrm{p}}^{1,4286}-r_{\mathrm{p}}^{1,7143}\right) \cdot\left(\frac{1}{1-r_{\mathrm{D}}^{4} r_{\mathrm{p}}^{1,4286}}\right)\right]}$	$q_{\text {VSSV }}=A_{0} d_{\mathrm{V}}{ }^{2} C_{\mathrm{d}} p_{\mathrm{P}} \sqrt{\left[\frac{1}{T}\left(r_{\mathrm{p}}^{1.4286}-r_{\mathrm{p}}^{1.7143}\right) \cdot\left(\frac{1}{1-r_{\mathrm{D}}^{4} r_{\mathrm{p}}^{1.4286}}\right)\right]}$
11	Eq. (A.8-42)	$m_{\text {ed }, i}=1.293 \cdot q_{\text {SSV }} \cdot \Delta t_{i}$	$m_{\text {ed, } i}=1.293 \cdot q_{\text {VSSV }} \cdot \Delta t_{i}$
12	Legend Eq. $\text { (A. } 8-51 \text {) }$	$m_{\text {ed }}=$ mass of equivalent diluted exhaust gas over the cycle [kg]	$m_{\text {ed }}=$ mass of diluted exhaust gas over the cycle [kg]
13	Annex 8 appendix 1, A.8.1., A8.1.1. to A.8.1.3.	A.8.1., A8.1.1. to A.8.1.3. [incorrect numbering]	replace numbering by A.8.5., A.8.5.1 to A.8.5.3
14	Annex 8 appendix 2, A8.2	A8.2 [incorrect numbering]	replace numbering by A.8.6

