TEG-048 29 Nov. 2007 JAMA-JARI

## Review of Injury Criteria and Injury Thresholds for Flex-PLI

### **Flex-GT Tentative Threshold Values**

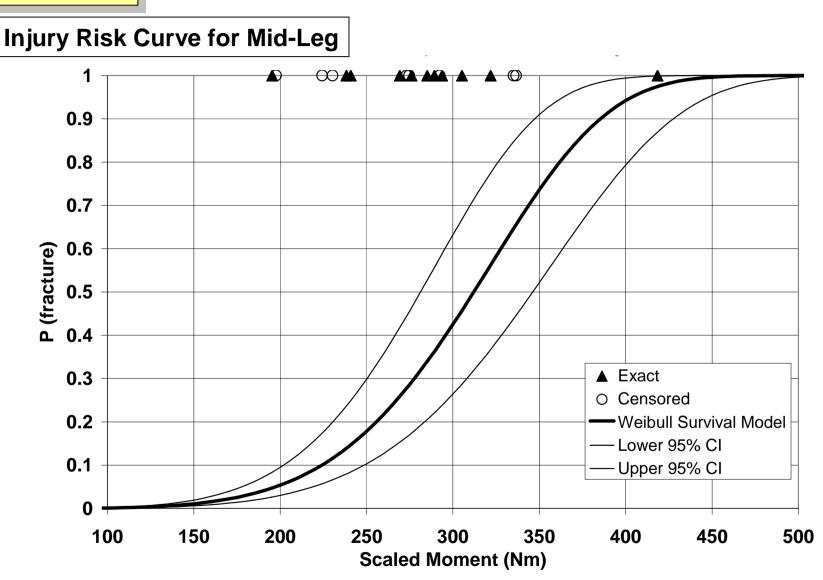
| Hum | nan va       | alue             |                                                                   |                                                                 |  |  |
|-----|--------------|------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
|     | Body regions |                  | 50% injury risk level of AM50 (tentative)                         | References                                                      |  |  |
|     |              |                  | Human value                                                       |                                                                 |  |  |
|     | Leg          | (Tibia)          | BM (312 - 350 Nm)                                                 | BM (312 Nm): Kerrigan et al., 2004<br>BM (350 Nm): INF GR/PS/82 |  |  |
|     | Knee (MCL)   | BA (18 - 20 deg) | BA (18 deg).: Ivarsson et al., 2004<br>BA (20 deg).: INF GR/PS/82 |                                                                 |  |  |

AM50: 50 percentile of american male

BM: Bending moment, BA: Bending angle, EL: Elongation, SD: Shearing displacement.

| (                                                                                                                                           | <b>}</b> (                                                                                                                         | £ (                                                     | $\hat{J}$                                                   |                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|
| Human                                                                                                                                       | Human Model                                                                                                                        | Flex-GT Model                                           | Flex-GT                                                     |                                           |
| Tibia bending moment                                                                                                                        | Tibia bending moment                                                                                                               | Tibia bending moment                                    | Tibia bending moment                                        |                                           |
| H <sub>TBM</sub>                                                                                                                            | HМ <sub>твм</sub>                                                                                                                  | <b>FGTM</b> <sub>TBM</sub>                              | <b>FGT<sub>TBM</sub></b>                                    |                                           |
| (Nm)                                                                                                                                        | (Nm)                                                                                                                               | (Nm)                                                    | (Nm)                                                        | Tentative                                 |
| 312                                                                                                                                         | 312                                                                                                                                | 299                                                     | 299                                                         | threshold valu                            |
| 350                                                                                                                                         | 350                                                                                                                                | 337                                                     | 337                                                         |                                           |
|                                                                                                                                             | 000                                                                                                                                | 001                                                     | 001                                                         |                                           |
| assumption: $H_{TBM} = HM_{TBM}$ . F                                                                                                        |                                                                                                                                    | 001                                                     | 001                                                         |                                           |
| assumption: $H_{TBM} = HM_{TBM}$ , F                                                                                                        |                                                                                                                                    |                                                         |                                                             | Ļ                                         |
| assumption: $H_{TBM} = HM_{TBM}$ , F                                                                                                        | GT <sub>MTBM</sub> = FGT <sub>TBM</sub>                                                                                            |                                                         | <b>V</b>                                                    | €<br>↓                                    |
| assumption: $H_{TBM} = HM_{TBM}$ , F                                                                                                        | GT <sub>MTBM</sub> = FGT <sub>TBM</sub>                                                                                            |                                                         | Flex-GT model                                               | €<br>Flex-GT                              |
| assumption: $H_{TBM} = HM_{TBM}$ . F<br>FGT <sub>MTBM</sub> = 0.9977 * $HM_{TBM}$ - 1                                                       | GT <sub>MTBM</sub> = FGT <sub>TBM</sub><br>2.325 (from reguration curve)                                                           | ¢ (                                                     | ¢ (*                                                        | Flex-GT Knee MCL elongation               |
| assumption: $H_{TBM} = HM_{TBM}$ . F<br>FGT <sub>MTBM</sub> = 0.9977 * HM <sub>TBM</sub> - 1                                                | GT <sub>MTBM</sub> = FGT <sub>TBM</sub><br>2.325 (from reguration curve)                                                           | L I I I I I I I I I I I I I I I I I I I                 | Flex-GT model                                               |                                           |
| assumption: H <sub>TBM</sub> = HM <sub>TBM</sub> . F<br>FGT <sub>MTBM</sub> = 0.9977 * HM <sub>TBM</sub> - 1<br>Human<br>Knee bending angle | GT <sub>MTBM</sub> = FGT <sub>TBM</sub><br>2.325 (from reguration curve)<br>Human Model<br>Knee bending angle                      | Human Model<br>Knee MCL elongation                      | Flex-GT model<br>Knee MCL elongation                        | Knee MCL elongation                       |
| assumption: $H_{TBM} = HM_{TBM}$ . F<br>FGT <sub>MTBM</sub> = 0.9977 * $HM_{TBM}$ - 1<br>Human<br>Knee bending angle<br>$H_{KBA}$           | GT <sub>MTBM</sub> = FGT <sub>TBM</sub><br>2.325 (from reguration curve)<br>Human Model<br>Knee bending angle<br>HM <sub>KBA</sub> | Human Model<br>Knee MCL elongation<br>HM <sub>MCL</sub> | Flex-GT model<br>Knee MCL elongation<br>FGTM <sub>MCL</sub> | Knee MCL elongation<br>FGT <sub>MCL</sub> |

assumption:  $H_{KBA} = HM_{KBA}$ .  $FGT_{MMCL} = FGT_{MCL}$ 


 $HM_{MCL}$  = 0.835 \*  $HM_{KBA}$  (from human model output)

FGTM<sub>MCL</sub> = 0.6924 \* HM<sub>MCL</sub> + 8.0156 (from reguration curve)

Convert human tolerance values to the Flex-GT ones (use correlation ratio/formula)

## References

Human value



• Kerrigan, J.R., Drinkwater, D.C., Kam, C.Y., Murphy, D.B., Ivarsson, B.J., Crandall, J.R., Patrie, J. (2004) Tolerance of the Human Leg and Thigh in Dynamic Latero-Medial Bending, ICRASH 2004.

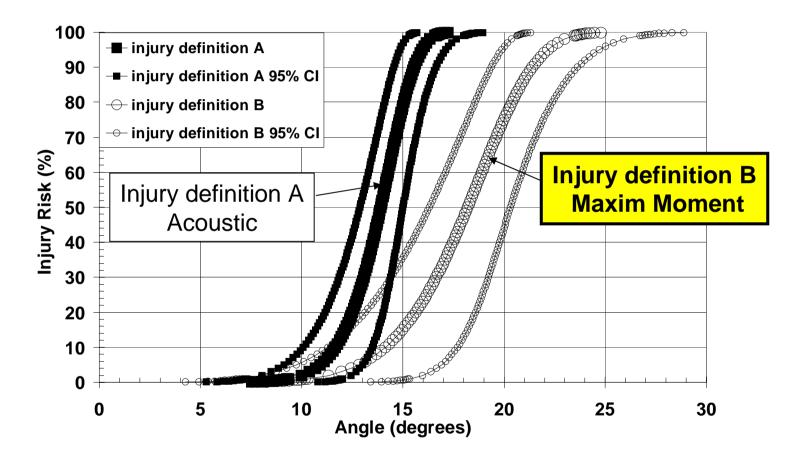
Human value

#### Injury Risk Curve for Mid-Leg

#### Tibia Bending Strength and Response Nyquist G. W. et al, 1985 (SAE, Paper No. 851728)

Tibia Bending: Strength and Response Nyquist G. W. et al, 1985 (SAE 851728)

| TootNo   | CadaverNo. | Sav | Age     | Stature | Body Mass | Impact Speed | Direction of | Peak Bending Moment |
|----------|------------|-----|---------|---------|-----------|--------------|--------------|---------------------|
| Testino. | Gadaverno. | Sex | (years) | (m)     | (kg)      | (m/s)        | Loading      | at Midspan (Nm) *   |
| 118      | 458        | М   | 54      | 1.82    | 68        | 3.5          | LM           | 395                 |
| 124      | 406        | М   | 64      | 1.77    | 82        | 4.2          | LM           | 287                 |
| 126      | 375        | М   | 58      | 1.74    | 73        | 4.2          | LM           | 224                 |
| 127      | 404        | М   | 56      | 1.76    | 79        | 3.7          | LM           | 237                 |
| 129      | 395        | М   | 57      | 1.78    | 99        | 3.7          | LM           | 349                 |
| 132      | 525        | М   | 57      | 1.87    | 45        | 3.8          | LM           | 264                 |
| 147      | 400        | М   | 57      | 1.78    | 84        | 2.9          | LM           | 431                 |


\* The peak values were attenuated by 10 % by filtering (CFC 60) procedure.

#### Proposed injury threshold for tibia bending: 350 Nm

• ECE/TRANS/WP.29/GRSP/INF GR PS (2004) Discussion on Injury Threshold for Pedestrian Legform Test, INF/GR/PS/82, P. 2.

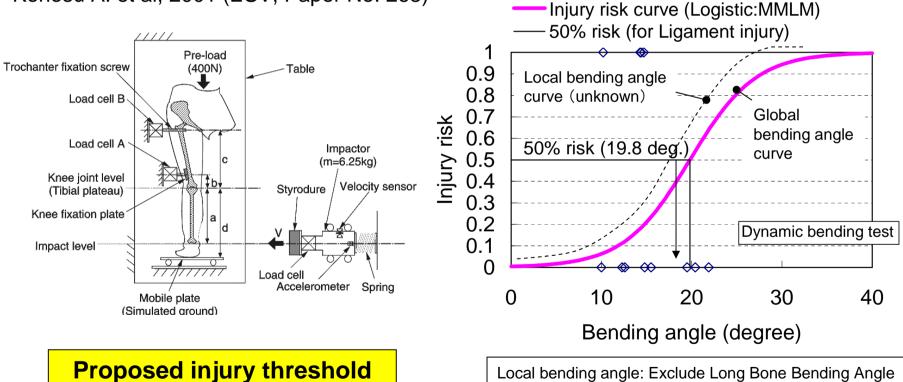
Human value

### Injury Risk Curve for Knee (Bending)



 Ivarsson, B.J., Lessley, D., Kerrigan, J.R., Bhalla, K.S., Bose, D., Crandall, J.R., Kent, R. (2004) Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities, Proc. International IRCOBI Conference on the Biomechanics of Impacts, pp. 179-191.

Human value


Injury Risk Curve for Knee (Bending)

# RECONSIDERATION OF INJURY CRITERIA FOR PEDESTRIAN SUBSYSTEM LEGFORM TEST

- PROBLEMS OF RIGID LEGFORM IMPACTOR -

Konosu A. et al, 2001 (ESV, Paper No. 263)

for Knee bending: 20 deg.



Local bending angle: Exclude Long Bone Bending Angle Global bending angle: Include Long Bone Bending Angle

Observed data

• ECE/TRANS/WP.29/GRSP/INF GR PS (2004) Discussion on Injury Threshold for Pedestrian Legform Test, INF/GR/PS/82, P. 2.

Human model value

Injury Risk Curve for Knee (Shearing)

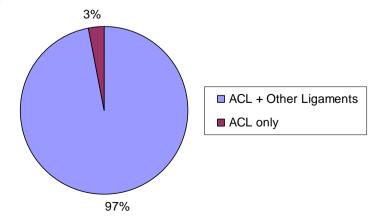
#### IHRA/PS/309

2) Knee injury risk curve for shearing
No injury risk curve is set by IHRA/PS because of its priority is low from the accident. IHRA/PS just described an example 10 mm from the Dr. Cesari's computer simulation analysis.

• International Harmonized Research Activity/Pedestrian Safety Working Group (2004) IHRA/PS Decisions for the IHRA/PS Legform Test Procedures, IHRA/PS/309.

#### Accident data

G. Teresinski et al., Knee joint injuries as a reconstructive factors in car-topedestrian accidents, Forensic Science International 124 (2001) 74-82.


G. Teresiński, R. Madro/Forensic Science International 124 (2001) 74-82

#### Table 1

Frequencies of knee injuries before and after cutting through the tibial and femoral epiphyses (additionally, the frequency of isolated injuries to the anterior cruciate ligament was included)

|                                                                                                    | Impact side   |              |                 |                |                   |        | Total |
|----------------------------------------------------------------------------------------------------|---------------|--------------|-----------------|----------------|-------------------|--------|-------|
|                                                                                                    | From<br>front | From<br>rear | From<br>lateral | From<br>medial | Not<br>determined | - only |       |
| Number of victims                                                                                  | 24            | 87           | -               | 165            | 37                | 44     | 357   |
| Percentage (%) of victims with knee injuries<br>(visible before the cross-sections were performed) | 79            | 51           |                 | 81             | 32                | 11     | 60    |
| Number of victims with the cross-sections of the<br>knee epiphyses                                 | 18            | 47           |                 | 139            | 25                | 20     | 249   |
| Percentage (%) of victims with knee injuries                                                       | 89            | 72           |                 | 94             | 64                | 15     | 80    |
| Number of isolated injuries to the anterior<br>cruciate ligament                                   | 1             | 13           | 2               | 2              | 0                 | 2      | 20    |

Under the lateral or medial side impact, only ACL injured case is quite rear (3%). Most of all (97%) case accompany with other ligament injuries.



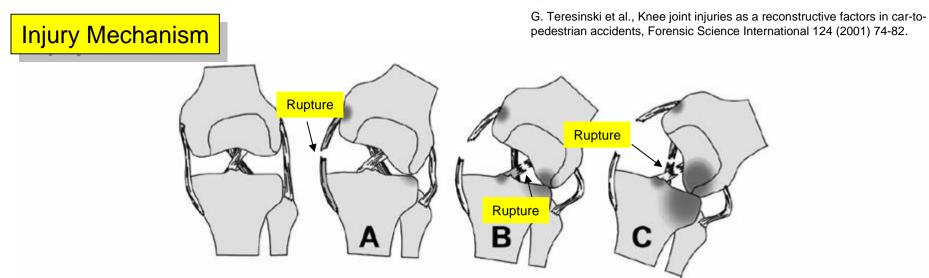



Fig. 8. Stages of the left knee injury (frontal view) in the mechanism of valgus flexion. (A) Avulsion of the medial collateral ligament; (B) avulsion of the anterior cruciate ligament; (C) avulsion of the posterior cruciate ligament. A  $\rightarrow$  C increasing compression of the lateral tibial and femoral condyles.

78

G. Teresiński, R. Madro/Forensic Science International 124 (2001) 74-82