

Informal document No. **GRSP-41-03** (41st GRSP,7-11 May 2007,agenda item 3.1.1)

Japan Test Programme Backset Measurement with R-point versus H-point method

April '07

1. Purpose

2. Evaluation Conditions and Test Seat Specifications

3. Comparative Results of Backset Measurements

4. Conclusions

1. Purpose

To summarize the advantages and disadvantages of the following two proposed backset measurement methods, and determine suitable evaluation standards.

•H-point Method: Backset is measured using a 3D manikin and a head restraint measuring device (HRMD), with the seat back set at the manufacturer's design angle.

•R-point Method: Backset is measured with an HRMD or equivalent device initially aligned to the seating reference point (SRP), with the seat back set at the manufacturer's design angle. (Note: The R-point is within \pm 25 mm of the H-point.)

H-point Method

R-point Method

2. Evaluation Conditions

0	Seat		No. of	No. of	No. of	Reclining	
Case	Туре	No.	measurers	measure- ments	g device	angle	
H-point Backset with Design SBA (Seat Back Angle)	Mi(a)*	3	3	9	1	D	
	Mi(b)*	1	3	3	1		
	Mi(c)	3	3	9	1		
	N	3	3	9	1	Design	
	Ma	3	3	9	1	angre	
	S	3	3	9	1		
	D	3	3	9	1		
R-point Backset	Mi(a)*	3	2	9	3	Design angle	
	Mi(b)*	1	2	3	3		
	Mi(c)	3	3	9	1		
	N	3	3	9	1		
	Ma	3	3	9	1		
	S	3	3	9	1		
	D	3	3	9	1		

 \ast :Cited from 7th GTR Meeting, HR-7-10

2. Test Seat Specifications

Cited from presentation material for7th GTR Meeting HR-7-10

Type Mi (a)

Type Mi (b)

2. Test Seat Specifications

Type Mi (c)

Type N

Reactive head restraints

Type Ma

Type D

Type S

2. H-point Variability of Test Seats

The H-points of the test seats were distributed in the forward and upward directions, within the specified tolerance (± 25 mm).

2. Torso Angle Variability of Test Seats

Torso angle measurements were also within the specified tolerance $(\pm 3^{\circ})$.

3. Comparative Results of Backset Measurements

While values obtained with the R-point method were somewhat higher or lower for various seats, the R-point measurements were on average **6.7 mm** lower.

3. Comparative Summary of Variability and Repeatability

The R-point method yielded better coefficients of variation (CV) for variability and repeatability of measurements.

	M easurem ent Repeatability							
Туре	H-Point Backset with Design SBA		R-Point Backset		H-Point Backset with 25dgree SBA (Reference)			
	Max. Variation (mm)	C.V.	Max. Variation (mm)	C.V.	Max. Variation (mm)	C.V.		
M i(c)	± 1.75	5.41	± 0.00	1.54	± 6.50	13.45		
Ν	± 3.00	6.84	± 0.50	1.06	± 8.00	12.38		
Ма	± 1.25	2.97	± 0.00	2.07	± 6.50	13.95		
S	± 1.75	6.23	± 0.50	2.06	± 7.50	19.79		
D	± 3.00	4.93	± 0.50	0.54	± 6.00	8.04		
Ave.	± 2.15	5.28	± 0.30	1.46	± 6.90	13.53		

X

$$C.V = \frac{S_d}{\overline{X}} \quad 100 \ (\%)$$

= Mean value of each seat

S_d = Standard deviation of each seat

3. Patterns of Backset Values

Three of the six non-active seats were compatible with the USproposed H-point backset limit of 55 mm, with allowance for 3σ variability.

Туре	H-Point Backset with Design SBA (HA)			R-Point Backset (RA)			RA -HA	Compatibilit v with H-
	Actual		3σ	Actual		3σ	Actual	point<55
	Min.	Max.	Max.	Min.	Max.	Max.	Ave.	F
Mi(a)	71.0	79.0	82.2	55.0	62.0	65.8	-15.0	FAIL
Mi(b)*1	51.0	50.0	71.0	31.0	35.0	50.5	-17.7	FAIL
Mi(c)	31.0	39.5	42.4	27.5	30.0	31.8	-6.1	PASS
Ν	45.0	58.0	62.5	59.0	63.0	65.5	11.0	PASS*2
Ma	35.0	40.0	42.5	19.0	21.0	22.6	-17.7	PASS
S	20.5	29.0	32.8	20.0	23.5	25.3	-3.6	PASS
D	51.0	59.0	63.3	56.0	59.0	60.6	1.9	FAIL
Ave.	47.1		56.7	40.1		46.0	-6.7	

*1: Estimated from Mi(a) variability, due to insufficient number of measurements.

*2 : Determined as \leq 80 for a reactive seat.

4. Conclusions

0

- 1. Measurement Method The R-point method has higher repeatability.
- 2. Difference between H-point and R-point measurements While theoretically there should be no difference between the average measurements, actual **R-point measurements were about 7 mm lower** because of seat variability patterns.
- Feasibility of Desired Backset Value
 The feasibility of the US-proposed "H-point backset limit of 55 mm" is verified, based on the design seat back angle, with allowances for production and measurement variations.

Equivalent R-point backset will be about 48 mm or less.