GRBIG-ASEP-01- 005 GRB informal group ASEP R51 November 2005 Issued by the Netherlands

$R51.02 \rightarrow R51.03$ The most important changes in Annex 3 (M1-N1)

A short introduction for newcomers in GRBIG "ASEP"

Annex 3 of D/ISO proposal

Noise source balance in line with Leq during normal urban driving

Summary: What has changed?

- Change over from empahasis on powertrain to total vehicle test (including the tyres).
- Improved correlation between test result of the vehicle and its contribution to the equivalent sound level (Leq) during normal operation in urban main streets.
 - With respect to ranking of vehicles
 - With respect to noise source contributions
 - Especially tyre/road noise contribution

Typical noise emission in traffic

Noise emission depends on

	Range (dB(A)
Powertrain	
Design (van-car; diesel-petrol)	10
Engine speed (800-4000 rpm)	20
Engine load (0-100%)	0-5
Tyre	
Design (tread profile; size)	10
Vehicle speed (10-70 km/h)	25
Road surface	
Design	10

History of noise type approval

- Powertrain
 - ECE R51 since 1982
 - EU since 1970
- Tyres
 - ECE R117 since 2005
 - EU since 2001
- Road surfaces
 - None international
 - scarce national (eg. Netherlands since 2001)

History

- 1982: R51.01
 - Focus on powertrain
 - Simulation of "worst case event"
 - WOT in 2nd and 3rd gear at 50 km/h start speed
 - Engine load
 - **100%**
 - Engine speed
 - 60-80%
 - Tyre-road noise: as low as possible
- 1988: interim lowering of limits by 3-4 dB(A)

History (cont)

- 1995: R51.02
 - Retain focus on worst case powertrain noise
 - Further 3-4 dB(A) lowering of limit values
 - Tyre-road noise: further specified to keep as low as possible
 - Road surface: ISO 10844
 - Very smooth
 - Dense surface
 - Effectively -3(±1) dB(A) compared to normal surface
 - Tyre: allowance to use worn tyres (qualifier slicks)

History (cont.)

- 1995-2000 Various evaluations of effect of vehicle noise regulations (e.g.: International-INCE working group)
 - Trucks significant effect
 - Cars
 - Spread in noise has been reduced
 - No big effect on Leq
 - Reasons for lag of effect:
 - 1. No regulation of tyre/road noise
 - 2. Limit values not very strict in the beginning
 - 3. Inertia effect: old vehicles stay in traffic for long time
 - 4. Trend to buy bigger (noisier) vehicles (SUV, delivery van, wide tyres, diesel)
 - Measurement method vehicles not sufficient realistic (e.g. trucks are tested without load)

History (cont)

- 1999: ACEA proposal
 - basis for R51.03 Annex 3
 - bring measurement method R51 more in line with <u>normal</u> urban operation
- 2001: EU tyre noise directive 2001/43
- 2005: ECE R117 tyre noise regulation
- 2005: GRB New informal group ASEP

R51.02 Operation on the test track

- Example
 - passenger car, petrol, compact class, 5 speed manual gearbox
- Preparation:
 - ISO 10844 test track (specified road surface and dimensions)
 - Measurement equipment
 - 2 sound level meters
 - Speed measuring device (eg radar)
 - Light barriers at AA' and BB' (and PP')
 - check which is lowest speed: 50 km/h or 3/4 S in 2nd gear
- Operation
 - Approach speed 50 km/h
 - Depress accelerator at line AA' in 2nd gear
 - Depress accelerator at line AA'in 3rd gear
- Measure
 - Lmax
 - Vehicle speed at AA' (to be 50 km/h)
- Final result
 - Average of Lmax in 2nd and 3rd gear

R51.03 Operation on the test track (1)

- Example 1
 - passenger car, petrol, compact class, 5 speed manual gearbox
- Preparation:
 - ISO track and layout as in R51.02
 - Measurement equipment as in R51.02 (sound level meters, radar and light barriers)
 - Power (40 kW) declared by manufacturer
 - Test mass (1025 kg) to be measured
 - Calculate PMR (39 kW/t) and a,WOTref (1,12 m/s²) and a,urban (0,92 m/s²)
 - Check on tyres: full tread depth and type/size as released by veh. manufacturer

Measure

- Lmax
- Vehicle speed
- Acceleration (from V at AA' and BB' and/or PP')

Operation

- Approach speed: to be found by operator (probably 43-46 km/h)
- Point of depressing accelerator: to be declared by manufacturer (0-10 m before AA')
- Seek for
 - 50 km/h on line PP' and
 - Gear in which a,WOTtest is closest to a,Wot
- Depending on the a,WOTtest 1 or 2 gears have to be measured at WOT acceleration;
 - Eg 3rd gear (aWOTtest = 1,36 m/s²) 4th gear (aWOTtest = 1,0 m/s²)
- The same gears have to be measured cruising at 50 km/h

Final result

- Average of 4 Lmax values according to formulas and depending on a,WOTtest
 - In this example 66% of 4th gear and 33% of 3rd gear
 - In this example 82% of WOT and 18% of cruise

R51.03 Operation on the test track (2)

- Example 2
 - passenger car, petrol, sports car, 5 speed manual gearbox
- Preparation:
 - ISO track and layout as in R51.02
 - Measurement equipment as in R51.02 (sound level meters, radar and light barriers)
 - Power (150 kW) declared by manufacturer
 - Test mass (750 kg) to be measured
 - Calculate PMR (200 kW/t) and a,WOTref (2,25 m/s²) and a,urban (1,36 m/s²)
 - Check on tyres: full tread depth and type/size as released by veh. manufacturer

Measure

- Lmax
- Vehicle speed
- Acceleration (from V at AA' and BB' and/or PP')

Operation

- Approach speed: to be found by operator (probably 40-45 km/h)
- Point of depressing accelerator: to be declared by manufacturer (0-10 m before AA')
- Seek for
 - 50 km/h on line PP' and
 - Gear in which a, WOTtest is closest to a, Wot
- Depending on the a,WOTtest 1 or 2 gears have to be measured at WOT acceleration;
 - Eg 3rd gear (aWOTtest = 2,9 m/s²); 4th gear (aWOTtest = 2,2 m/s²); 5th gear (aWOTtest = 1,8 m/s²)
 - In principle 3rd and 4th should be used (aWOTref is between aWOTtest of 3rd and 4th gear)
 - However skip 3rd and 4th gear because aWOTtest > 2 m/s²: test only 5th gear
- 5th gear has to be measured cruising at 50 km/h

Final result

- Average of 2 Lmax values according to formulas and depending on a,WOTtest
 - In this example 1,36/1,8 =76% of WOT and 24% of cruise

Changed operation condition in engine map

Annex 3: the changes (M1-N1)

R51.02	R51.03

Principal choices

Operation condition represents	Worst case propulsion noise	Leq total vehicle under normal driving behavior
Balance noise sources	Focused on propulsion	In line with Leq,urban

Consequences

Powertrain		
-Engine speed	50-80% of S	30-50% of S
–Engine load	100%	70-90%
Tyre	Slick qualifiers allowed	Full tread depth realistic tyres
-Vehicle speed	55 km/h	50 km/h
Road surface	ISO 10844 (-3 dB(A))	ISO 10844 (-3 dB(A))

Principal choices in constructing R51.03 from urban statistics

- Simulate normal urban driving behavior
 - 50% of engine speed*
 - 90% of acceleration*
 - 90% of noise emission*
 - Noise source balance in line with Leq*
 (Powertrain versus tyre/road)
 - * As found in statistics during normal urban driving

R51.03: Principal choice for normal driving behavior

R51.03: Principal choice for normal driving behavior

distribution of engine speed passenger car 113 kW/t rated engine speed 6000 1/min

Shift in driving behavior leads to shift in engine speed

Engine speed in R51.03 depends on power/mass ratio

Vehicle Class M1,N1,N2,N3 : (N/S_{L80})_{Amax,VPP=50km/h}, engine speed for max acceleration,

Noise source balance in line with Leq during normal urban driving

- The combination of
 - Representative, full tread depth tyres
 - -50 km/h
 - ISO test track
 - 50% of engine speed during urban driving
 - Leads to a balance between powertrain noise and tyre/road noise which is in line with the Leq during normal urban driving

Thank you for your attention