Side Impact and Ease of Use Comparison between ISOFIX and LATCH

CLEPA Presentation to GRSP,

Informal Document GRSP- 35 -1 9

Geneva, May 2004

Objective of test programme

 To objectively assess the comparison between ISOFIX and LATCH in both side impact performance and consumer ease of use.

Contents

- ISOFIX Background
- Accidentology of children (University of Hannover & GDV Studies)
- Test Method & Reason for choosing it
- Definition of child restraint systems tested
 ISOFIX seats, Off the shelves Latch seats
- Test Results & Videos
- Conclusions for sled tests
- Ease of use
 - Isofix , GDV investigations in Europe, 2003
 - Latch, Feedback from NHTSA meeting in USA (July 2003)
 ³

ISOFIX Background

- ISO 13216-1 ISOFIX originally developed to cover rigid attachments
- LATCH was introduced as short term technical spec covered in an annex to part 1

Accidentology

Side Impact - Injury Risk Per Body Region Langwieder, 1996

Comparison Frontal / Lateral Impacts Injuries MAIS 2-4

- Higher exposure in side impact for thorax, abdomen and pelvis
- Lesser exposure in side impact for the head, but very often severity is higher (Otte, Protection of Children in Cars, Cologne July 03).

Side Impact Comparison

- ISO DIS 14646 (moving panel method) is as yet unconfirmed
- Consumer tests in Europe use a number of similar but different methods
- Sled based test method used is based on an approximation of Consumer tests

Test Method

- R44 bench rotated 80 degrees.
 - To get lateral as well as forward motion of the dummy (situation more critical than with 90° pure lateral set up)
- Rigid fixed door panel height 500 mm above CR and 300 mm from centreline of ISOFIX anchorage bars
 - No padding on the door

Test Method

- Sled velocity 25 kph, peak deceleration 15.25 g +/- .25 g
 - According to ISO draft
- ISOFIX installed as R44-03 annex 21 para 1.3 (new).
 - 25 mm spacer
 - Harness set up force 250 N
- LATCH tension 50N
- Top Tether anchorage:-R44-03 Point G2 offset to worst case position (intrusion side to minimise the top tether effect.

Test Configurations and Recorded Parameters

- Tests conducted both with and without Top Tether strap
- Seats A, B, C and E off shelf FMVSS 213 LATCH products (2 off each)
- Seats D ECE 44 Specific Vehicle approved Rigid ISOFIX (2 off)
- D1 & D2 seats as D above but LATCH equipped

Pre_test Photographs of Latch seats tested

A, Latch, w/o TT

B, Latch, w. TT

B, Latch, w/o TT

C, Latch , w. TT

C, Latch, w/o TT

Pre_test Photographs of Latch seats, cont.

D1, Latch, w. TT

D2, Latch, w/o TT

E, Latch, w/o TT

Pre_test Photographs of Isofix seat D

D, Isofix, w. TT

D, Isofix, w.o TT

Seat D is an Isofix child restraint, specific approved according to ECE44

Test Configurations and Recorded Injury Criteria

- ATD used TNO P3 (accepted for relative comparison, as not biofidelic in side impact)
- Head containment (EuroNCAP Protocol)
- HIC Limit 1000
- Head A resultant Limit 80g
- Chest A resultant Max
- Chest A resultant 55g & 3 ms Exceedence

Test Results

Test Results*

CRS Seat		t TD		тт	Head contained	HIC	Head res	Chest resultant	Time ms*
	Α	P3	LATCH	Yes	No	178	55.81	95.46	8.29
	Α	P3	LATCH	No	No	244	66.35	104.79	6.83
	В	P3	LATCH	Yes	No	500	383.71	89.08	6.38
	В	P3	LATCH	No	No	1361	390.00	119.00	6.53
	С	P3	LATCH	Yes	No	441	318.08	95.67	5.92
	С	P3	LATCH	No	No	642	316.94	101.34	6.40
	D	P3	Rigid	Yes	Yes	114	33.98	26.43	0.00
	D	P3	Rigid	No	Yes	172	46.64	30.67	0.00
	D1	P3	LATCH	Yes	No	236	65.86	59.29	3.34
	D2	P3	LATCH	No	Yes	350	76.91	84.15	6.87
	E	P3	LATCH	Yes	Yes	163	59.08	97.09	5.29
	E	P3	LATCH	No	Yes	142	57.09	91.55	6.88

* Should be considered as relative numbers and not absolute numbers

HIC

HIC

Head Resultant Acceleration (G)

3ms Chest Resultant Acceleration (G)

∠1

Exceedence of Chest 3ms Acceleration (ms)

Res > 55 in ms

Test Video

AVI test 1642 Rigid ISOFIX

AVI test 1651 LATCH

Major Difference Between Rigid & Latch Attachment

- Transverse and rotational movement of entire seat assembly (note the base) towards the impacted side with Latch
- Head containment reduced (same basic product) with Latch by increased side movement and rotation about vertical axis

Conclusions

- For all measured criteria
 - Rigid ISOFIX results are superior to LATCH
 - Only Rigid ISOFIX met all three criteria limits.
 - The Rigid ISOFIX product performance deteriorated when installed by the LATCH device that showed best LATCH performance
- Request to Regulation Authority
 - To introduce Isofix as the standard for child seat attachment, since it gives lower injury numbers in side impact.

Ease of Use

- Rigid ISOFIX was just introduced in R44 as a Universal system, in-depth analysis of ease of use is however available (GDV, 2003)
- LATCH experience in the USA covers wide use
 - Feedback from NHTSA meeting Docket No NHTSA 2003 15998-1

Field Experience with Rigid ISOFIX GDV 2003 Survey

- 1/ Installation of Group 1 ISOFIX Seat
- 2/ Installation of Group O+ ISOFIX (Frame and baby seat)
- 3/ Comparison of installation ISOFIX / Conventional Seat

GDV ISOFIX Ease of Use Study

- Group 1 ISOFIX
 - 100 persons
 - Correct installation 97, 3 incorrect (1 case unable to lock , 2 cases one side locked)
- Group 0+
 - 20 persons, seat correctly installed 15 OK and 5 non OK
- ISOFIX / Conventional
 - 120 persons : On ISOFIX
 - 84% Isofix easier
 - 81"% greater stability 82 % better protection feeling
 - 75% found additional mass acceptable

NHTSA LATCH consumer feedback -Summary

- LATCH straps routed through the wrong belt path opening
- LATCH interference during seat belt installation
- The lower anchor strap adjuster hitting perpendicular to belt path so that the belt will not stay tight
- It is difficult to loosen LATCH straps once they are tightened

Thank You