附件 8

全球统一制度分类实例

Copyright©United Nations, 2017. All rights reserved

附件8

全球统一制度分类实例

A8.1 分类建议

下列分类建议是根据全球统一制度的标准提出的。文件包含了对每个健康危险种类分类建议的简要说明,以及所有已知科学证据的详细情况。

根据标准的和不标准的动物研究结果,建议对该物质按急毒性和腐蚀性分类。

建议的分类	全球统一制度:	口服急毒性第4类
		皮肤急毒性第3类
		皮肤刺激/腐蚀第 1C 类
		眼刺激/严重眼损伤第1类
		易燃液体第4类

A8.2 物质识别

1.1	EINECS 名称 如果不在 EINECS 内 IUPAC 名称	Globalene Hazexyl Systemol
		CAS No. 999-99-9
		EINECS No. 222-222-2
1.2	同物异名	2-Hazanol
	(如果有 ISO 名称,给出 ISO 名称)	Globalethylene
1.3	分子式	$C_xH_yO_z$
1.4	结构式	
1.5	纯度(w/w)	
1.6	主要杂质或添加剂	
1.7	已知用途	工业:表面涂层溶剂和清洁液; Globalexyl UNoxy ILOate 的中间化学品。 大众: 盥洗室清洁剂

A8.3 物理一化学特性

建议按物理——化学终点指标划为第4类易燃液体。

2.1	物理形态	液体		
2.2	分子量	146.2		
2.3	熔点/范围(℃)	-45		
2.4	初沸点/沸腾范围(℃)	208.3		
2.5	分解温度			
2.6	蒸气压(Pa (°C))	7		
2.7 相对密度(g/cm³) 0.887 - 0.890				
2.8	蒸气密度(空气=1)	5.04		
2.9	油脂可溶性(mg/kg, °C)			
2.10	水溶性(mg/kg, °C)	可轻微溶解(0.99% w/w)		
2.11	分配系数(log Pow)			
2.12	易燃性 闪点(℃) 爆炸极限(% , v/v) 自燃温度(℃)	闭杯: 81.7		
2.13	爆炸性	无现成数据		
2.14	氧化特性			
2.15	其他物理──化学特性			

A8.4 健康和环境特性

A8.4.1 急毒性

A8.4.1.1 口服

可划入全球统一制度第 4 类(300-2000mg/kg)。

物种	$LD_{50}(mg/kg)$	观察结果和说明	参考文献
大鼠	1480	无进一步详细数据。	2
大鼠	1500 (雄性) 740 (雌性)	利用 EGHE 的已知密度 0.89g/cm³, 从 ml/kg 计算 LD50 值 (mg/kg)。	8

A8.4.1.2 吸入

动物暴露在浓度约为 0.5 mg/l 的饱和蒸气中,无死亡或明显中毒迹象,因此,现有数据不支持分类。

物种	LC ₅₀ (mg/l)	接触时间(h)	观察结果和说明	参考文献
大鼠	>83 ppm.(约 等于 0.5mg/l)	4	在 83 ppm 浓度下无死亡、临床征象或严重损伤迹象 (85 ppm 为室温条件下的饱和蒸气浓度)。	3
大鼠	未说明	6	动物暴露在室温下的饱和蒸气浓度(假定为 85 ppm)。 无死亡现象,也未观察到明显的病理学变化。	8
大鼠	未说明	8	暴露在室温下的饱和蒸气浓度(假定为 85 ppm)无死亡现象。	2

A8.4.1.3 皮肤

可划入全球统一制度第3类(200-1000 mg/kg)。

物种	LD ₅₀ (mg/kg)	观察结果和说明	参考文献
大鼠	790	无进一步的详细数据。	2
兔子 (5/性别 /组)	720(雄性) 830(雌性)	动物暴露在最高 3560mg/kg 的剂量下 24 小时。死亡 动物中除 2 只以外,都在施用期间内死亡。在暴露期 过后,在一些动物中(未说明数量)报告出现局部毒性 症状(红斑、水肿、坏疽和淤斑),而且在施用后的 14 天观察期内,仍持续存在毒性症状。在观察期末期,还在一些动物中(未说明数量)发现溃疡症状。	8

A8.4.2 皮肤刺激/腐蚀

对于这种物质的刺激性质,目前的报告存在矛盾。在皮肤急毒性研究的同一篇文章中,介绍了一项专项皮肤刺激研究。作者指出,在 6 只做试验的兔子中,有 3 只出现"坏疽",而且一直持续到观察的最后一天(第 7 天),同时伴有轻微到中度红斑。此外,在研究过程中还观察到轻微到显著的水肿现象,但在 7 天观察期内消失。鉴于在研究过程中,一只动物没有出现任何皮肤反应迹象,而在其他动物中仅出现轻微到中度皮肤刺激,所以,在 3 只动物身上观察到"坏疽"多少有些出人意料。对兔子进行的一项急性皮肤毒性研究,也报告有皮肤刺激现象,其中包括"坏疽"和溃疡,但没有提及出现这种现象的动物数量。与这些发现形成对照的是,过去发表的一份简要研究报告曾指出,在兔子中只出现很少或者没有出现皮肤刺激现象。

在利用一种密切相关的物质进行的一项研究中,观察到的皮肤刺激结果,也是既有坏疽现象,也有无皮肤刺激现象。此外,二级信息源显示,某些其他类似的物质可引起"中度"皮肤刺激,而且接触这些物质时间过长,有可能造成灼伤。然而,具有短链的类似物质不被认为是皮肤刺激物。

考虑到在急性皮肤和表皮刺激研究中报告的坏疽现象不可忽略,而且与具有类似结构的物质所观察到的现象一起,可作为分类依据。全球统一制度将腐蚀性物质归入 3 个类别。数据虽然不能与标准完全吻合,但类别 1C 是合适的,因为观察到的坏死性损坏出现在接触 4 个小时以后。目前还没有证据显示,大大缩短接触时间会导致皮肤腐蚀。

物种	试验动 物数量	接触时间 (小时)	浓度 (w/w)	敷料(封闭、半 封闭、敞开)	观察结果和说明(说明刺激的 程度和性质以及可逆性)	参考文献
兔子	6	4	0.5ml 100%	封闭	第一天,在一只动物身上没有观察到刺激现象,在另一只动物身上没有观察有轻微的红斑(1级),但在第7天消失。在去掉敷料后,在4只动物身上出现轻度至中度红斑(1-2级)和轻微到明显的水肿(1-3级)。在接触期后的第7天,水肿消失。据报告,从第一天一直到第7天观察期结束,在敷用处,6只兔子中有3只出现"坏疽"症状。在第7天,6只兔子中有4只出现脱落现象。	8
兔子 (白化 变种)	5	24	100% (用量 未说明)	未说明	在这份不严谨的研究报告中,观察到的皮肤刺激迹象不多或者没有。	2

A8.4.3 严重眼损伤/眼刺激

在唯一可得的研究中,兔子接触的试验物质数量比建议的这一终点指标的标准协议低得多。观察到比较严重(如结膜充血 3 级)但可逆的效应。可以预言,在标准试验条件下,对眼睛的影响将非常严重,因此,可以划入全球统一制度第 1 类(对眼造成不可逆影响)。

物种	试验动物 数量	浓度 (w/w)	观察结果和说明 (说明刺激的严重程度和性质、任何严重的损害以及可逆性)	参考文献
兔子	6	0.005ml 100%	滴注一个小时后观察到结膜充血(3级)和放射(2.8级)现象。24、48 和 72 小时角膜混浊、虹膜、结膜充血、结膜水肿和放射现象的平均记分全部在0.5左右。所有的损害症状在第7天消失。	8
兔子	60	1%和 5%	二级文献中有关于观察到兔子出现与滴注未明确说明数量的 5%药液有关的眼损伤症状的报告,无法证实,因为在所述参考 文献中没有找到这一信息。	1

A8.4.4 皮肤和呼吸过敏

没有现成数据。没有更多的担心理由(如结构活性关系),因此没有提出分类建议。

A8.4.5 单次或多次接触后的特定目标器官毒性

A8.4.5.1 单次接触后的毒性

对于单次接触后这种物质产生特定、非致命性目标器官毒性的可能性,目前没有可靠资料。因此,在全球统一分类制度中,没有提出单次接触的特定目标器官毒性分类。

A8.4.5.2 多次接触后的毒性

A8.4.5.2.1 口服

目前没有口服重复剂量研究结果或人类证据,因此没有提出分类建议。

A8.4.5.2.2 吸入

在为期 13 周的大鼠吸入研究中,使用 0.43 mg/l 剂量(约 72 ppm)(这一接触水平接近于饱和蒸气浓度),没有出现有害毒性症状。根据全球统一制度的标准,无需进行分类。

物种	浓度 mg/l	接触时间 (小时)	处理时间	观察结果和说明(说明分组大小、 NOEL 和具有重要毒理学意义的效应)	参考文献
大鼠 (F344)20/性别/组 (加 10/性别/组-4 周恢复组)	0.12、0.24和 0.425	6	5 天/周, 为期 13 周	没有出现死亡。在大剂量雌雄两性和中剂量雌性动物中观察到体重减轻现象。验血和尿分析参数没有出现具有毒理学意义的变化。大剂量雌性动物试验表明,碱性磷酸酶含量有所增加。大剂量和中剂量雄性动物试验表明,绝对和相对肾重量出现具有统计学意义的增加。在大剂量雌性动物试验中观察到,绝对肝脏重量稍有增加(12%)。然而,在检查的任何器官中都没有发现总体或组织病理学上的变化。	3

A8.4.5.2.3 皮肤

根据报告,兔子的皮肤接触 444 mg/kg 的剂量 11 天后出现血液病学变化,但报告中没有给出量化数值。然而,由于提供的信息有限,无法通过这项研究得出结论,因此无法提出分类建议。

物种	剂量 mg/kg	接触时间 (小时)	处理时间	观察结果和说明(说明分组大小、 NOEL 和 具有重要毒理学意义的效应)	参考文献
兔子	0、44、222 和 444	6	9 剂量, 施用 11 天	这是在二级文献中报告的一项未发表的研究。在剂量最大的动物试验中观察到,血 液病学参数有所降低,但没有给出量化数 值,也没有说明局部影响如何。	1

A8.4.6 致癌性(包括慢性毒性研究)

没有现成资料——没有提出分类。

A8.4.7 生殖细胞致突变性

在二级文献中有体外艾姆斯氏试验、细胞遗传学和基因突变试验得到阴性结果的报告。没有现成的体内试验数据。这些数据不支持分类。

体外研究

试验	细胞类型	浓度范围	观察结果和说明	参考文献
艾姆斯氏 试验	沙门氏菌属 (未说明菌种)	0.3-15 mg/板	有无新陈代谢活化作用都是 阴性 。这是 二级信息源介绍的一项未发表的研究, 无进一步资料。	5
IVC	СНО	0.1-0.8 mg/ml(-S9), 0.08-0.4 mg/ml(+S9)	有无新陈代谢活化作用都是 阴性 。这是 二级信息源介绍的一项未发表的研究, 无进一步资料。	6
基因突变 试验	СНО	未说明	阴性 。这是二级信息源介绍的一项未发 表的研究,无进一步资料。	7
SCE	СНО	未说明	阴性 。这是二级信息源介绍的一项未发 表的研究,无进一步资料。	7

A8.4.8 生殖毒性——生殖能力

没有现成资料——没有提出分类。

A8.4.9 生殖毒性

大鼠或兔子在吸入可诱发轻微母体毒性的剂量水平后,没有出现生殖毒性症状。应指出,虽然较短链的相关物质被归入生殖毒性,但这种毒性随着链长的增加而减小,因此没有证据表明存在这种危险性。没有提出分类。

物种	接触途径	剂量	接触时间	观察结果和说明	参考文献
大鼠	吸入	21、41 和 80 ppm(0.1、0.24 和 0.48 mg/l)	妊娠第 6-15 天	试验物质的最大浓度接近饱和蒸气浓度。 在暴露期内在中剂量和大剂量分组中,观 察到与食物消耗量减少有关的母鼠体重增 加减小现象。没有生殖毒性迹象。	
兔子	吸入	21、41 和 80 ppm (0.12、0.24 和 0.48 mg/l)	妊娠第 6-18 天	试验物质的最大浓度接近饱和蒸气浓度。 在暴露期内,观察到大剂量动物的绝对体 重减小。没有生殖毒性的迹象。	4

A8.5 参考文献:

- 1. Patty, F.(Ed.)(1994).Industrial Hygiene and Toxicology. 4th Ed.pxxxx-xx New York: Wiley-Interscience.
- 2. Smyth, H.F., Carpenter, C.P., Weil, C.S. and Pozzani, U.S. (1954). Range finding toxicity data. *Arch. Ind. Hyg. Occup. Med.*
- 3. Fasey, Headrick, Silk and Sundquist (1987). Acute, 9-day, and 13-week vapour inhalation studies on Globalene Hazexyl Systemol. *Fundamental and Applied Toxicology*.
- 4. Wyeth, Gregor, Pratt and Obadia(1989). Evaluation of the developmental toxicity of Globalene Hazexyl Systemol in Fischer 344 rats and New Zealand White rabbits. *Fundamental and Applied Toxicology*.
- 5. Etc.