Name of matrix/vector (dimensions)	Definition	Description
$a_t t = \{0, 1\}$	Input	Corporate tax rate in a given <i>country</i> (n) in given <i>time period</i> (t)
b (n×1)	Input	Discount rate in a given <i>country</i> (<i>n</i>)
$AS_{t} t = \{0,1\}$	Input	Gross annual salary (US\$) for a given <i>facility staff type</i> (s) in a given <i>country</i> (n) in given <i>time period</i> (t)
$c_{t}_{(m \times 1)}$ $t = \{0, 1\}$	Input	Income tax rate of facility employees in a given <i>country</i> (n) in given <i>time period</i> (t) {needed if we consider net salary in calculations (would influence tot cost (and MEH))}
$d_{t}_{(n\times 1)} t = \{0,1\}$	Input	Employee benefits (as % of salary) in a given <i>country</i> (n) in given <i>time period</i> (t)
$\underset{(n\times s)}{B_t} t = \{0,1\}$	Input	Overhead costs (as % of salary) for a given <i>facility staff type</i> (s) in a given <i>country</i> (n) in given <i>time period</i> (t)
$C_{t}_{(n\times s)} t = \{0,1\}$	$C_t[n,s] = AS_t[n,s] * (1 + d_t[n] + B_t[n,s])$	Loaded salary in a given <i>country</i> (<i>n</i>) in given <i>time period</i> (<i>t</i>) {if we use net salary, AS[n,s] will be replaced by the net salary matrix}
$D_{t} t = \{0,1\}$	$D_t[n,s] = \frac{C_t[n,s]}{C_t[n,1]}$	Equivalent managerial hours (EMH) calculated as depending on the loaded salary for a given <i>facility staff type</i> (s) in a given <i>country</i> (n) in given <i>time period</i> (t)
$E_{(zxt)} t = \{0,1\}$	Input	Hours of work required for a given <i>initial action</i> (p) and <i>final action</i> (q) for a given <i>facility staff type</i> (s) in given <i>time period</i> (t) , where $z=(p+q)*s$

Annex – Structure and explanation of theoretical cost model

$F_{t} t = \{0,1\}$	$F_{t}[n,i] = E[i,t] + (E[i+1,t]*D_{t}[n,2]) + (E[i+2,t]*D_{t}[n,3]) + (E[i+3,t]*D_{t}[n,4])$ $i = \{1,5,9,13,,z-3\}$	Equivalent managerial hours of work needed for a given <i>initial</i> (<i>p</i>) and <i>final action</i> (<i>q</i>) in a given <i>country</i> (<i>n</i>) in given <i>time period</i> (<i>t</i>), where $z=(p+q)*s$
$G_t t = \{0, 1\}$	Input	Hours of work required by given <i>facility staff type</i> (<i>s</i>) for given <i>measuring</i> (<i>m</i>), <i>calculating</i> (<i>c</i>) or <i>estimating actions</i> (<i>e</i>) by facility staff to assess substances emissions in given <i>time period</i> (<i>t</i>) (same concept as matrix E but with different actions)
$HH_{t} t = \{0,1\}$	$HH_{t}[n,i] = G_{t}[1,i] + (G_{t}[2,i] * D_{t}[n,2]) + (G_{t}[3,i] * D_{t}[n,3]) + (G_{t}[4,i] * D_{t}[n,4])$ $i = \{1,,(m+c+e)\}$	Equivalent managerial hours of work needed for given <i>measuring</i> (m) , <i>calculating</i> (c) or <i>estimating actions</i> (e) by facility staff to assess substances emissions in a given <i>country</i> (n) and a given <i>time period</i> (t) (same concept as matrix F but with different actions)
$I_t t = \{0, 1\}$	$=HH'_i$	
$g_{(n\times 1)}^{total_t} t = \{0,1\}$	$= ga_i + gw_i + gl_i + gww_i + gt_i + gh_i + gn_i$	Total number of pollutants reported by facilities in a given <i>country</i> (n) in given <i>time period</i> (t)
j_0 (n×1)	$j_0[n] = \sum_{j=1}^p F_0[n, j]$	Total number of EMHs needed for initial actions by facility staff in a given <i>country</i> (n) only in the first time period (t=0)
k ₀ (n×1)	$k_0[n] = j_0[n] * C_0[n,1]$	Cost of initial actions by facility staff per facility in a given <i>country</i> (n) only in the first time period (t=0)
l ₀ (n×1)	$l_0[n] = k_0[n] * w_0[n]$	Total cost of initial actions by facility staff in a given <i>country</i> (<i>n</i>) only in the first time period (t=0) (including all facilities)
$o_t t = \{0, 1\}$	$o_t[n] = \sum_{j=1}^{p+q} F_t[n, j]$	Same concept as vector j_0 with the difference that this vector monitors
(#×1)	$\overline{j=p+1}$	final actions by facility staff
$n_t t = \{0, 1\}$	$n_t[n] = o_t[n] * C_t[n,1]$	Same concept as vector k_0 with the difference that this vector monitors
(11/1)		final actions by facility staff

$p_{t} = \{0,1\} \qquad p_{t}[n] = n_{t}[n]$	n[n] - n[n] * v[n]	Same concept as vector l_0 with the difference that this vector monitors
	$p_t[n] = n_t[n] x_t[n]$	final actions by facility staff
$\underset{(1\times n)}{h_tT} t = \{0,1\}$	$=ha_{t}+hw_{t}+hl_{t}+hww_{t}+ht_{t}+hh_{t}+hn_{t}$	EMHs in a given <i>country</i> (<i>n</i>) in given <i>time period</i> (<i>t</i>) using the employee threshold approach
$h_{t}_{(n\times 1)}$ $t = \{0,1\}$	$=(h_{i}T)'$	
$\begin{array}{c} q_t \\ {}_{(n\times 1)} \end{array} t = \{0,1\}$	$q_t[n] = h_t[n] * C_t[n,1]$	Total cost for MCE actions by facility staff in a given <i>country</i> (n) in given <i>time period</i> (t)
i,T $t = \{0,1\}$	$-ia \pm iz_0 \pm il \pm iz_0z_0 \pm it \pm ih \pm in$	Same concept as vector $h_i T$ with the difference that this vector uses the
$(1 \times n)$	$-m_t + m_t + m_t + m_t + m_t + m_t + m_t$	capacity threshold approach
$i_t t = \{0,1\}$	$=(i_{t}T)'$	
$r_{t} = \{0, 1\}$	x [u] = i [u] * C [u 1]	Same concept as vector q_t with the difference that this vector uses the
(n×1)	$r_t[n] = r_t[n] = C_t[n,1]$	capacity threshold approach
$s_t t = \{0, 1\}$	$= l_t + p_t + q_t$	Total national facility cost in a given <i>country</i> (n) in given <i>time period</i> (t)
(n×1)	$(NB:l_1=0)$	using the employee threshold approach
$t_{t} = \{0, 1\}$	$= l_t + p_t + r_t$	Same concept as vector s_t with the difference that this vector uses the
(n×1)	$(NB:l_1=0)$	capacity threshold approach
		For each <i>activity</i> (v) , a '1' is assigned to a cell to indicate that a given
A1	Input	substance (u) is likely to be released into air; otherwise, a '0' is
(<i>u×v</i>)		assigned. {Information gathered from EPER data available for 2001 and
		Aarhus Protocol Guidance}
$A11^{r}_{(v \times u)}$	AT	
W1	Input	Same concept as matrix A1 with the difference that it relates to water
(u×v)	mpu	emissions
$W_{(v \times u)}$ 1T	W1'	
L1	Input	Same concept as matrix A1 with the difference that it relates to land
$(u \times v)$		emissions

$L_{(v \times u)}^{1T}$	L1'	
$\underset{(u \times v)}{WW}$ 1	Input	Same concept as matrix A1 with the difference that it relates to transfers of water waste
W W 1 T	WW1'	
$\prod_{(u \times v)}^{T 1}$	Input	Same concept as matrix A1 with the difference that it relates to transfers of waste under a pollutant-specific regime
$T_{(v \times u)}^{1T}$	T1'	
$H1_{(u \times v)}$	Input	Same concept as matrix A1 with the difference that it relates to transfers of hazardous waste under a waste-specific regime
$H_{(v \times u)}^{1T}$	H1'	
$\underset{(u \times v)}{N1}$	Input	Same concept as matrix A1 with the difference that it relates to transfers of non-hazardous waste under a waste-specific regime
	N1'	
	Input	Records a given <i>legal commitment under an MEA (l)</i> in a given <i>country (n)</i>
$A_{(u imes \ell)}^{3M}$	Input	Records a given substance (u) in a given legal commitment under an MEA (l)
$A_{(\ell imes u)}^{3MT}$	A3M'	
	$=A2M \cdot A3MT$	A '0' in a cell indicates that a given <i>country</i> (n) <u>does not</u> monitor a given <i>substance</i> (u) ; otherwise, a number greater than zero indicates that the country <u>does</u> monitor that substance under an MEA
A2N (nxo)	Input	Same concept as matrix A2M with the difference that this matrix contains information about a given <i>national PRTR</i> (o) in a given <i>country</i> (n)
$A_{(u \times o)}^{3N}$	Input	Same concept as matrix A3M with the difference that this matrix contains information mapping a given <i>national PRTR</i> (o) to a given <i>country</i> (n)

	=A3N'	
A4N _(n×u)	$=A2N \cdot A3NT$	A '0' in a cell indicates that a given <i>country</i> (n) <u>does not</u> monitor a given <i>substance</i> (u) ; otherwise, a number greater than zero indicates that the country <u>does</u> monitor that substance under a national PRTR
$A_{(n \times u)}^{4L}$	Input	A '1' is assigned to a cell to indicate that a given <i>country</i> (n) <u>does</u> monitor a given <i>substance</i> (u) under a national licensing system; <u>otherwise</u> , a '0' is assigned
A4 (n×u)	= A4M + A4N + A4L	A '0' in a cell indicates that a given <i>country</i> (n) <u>does not</u> monitor a given <i>substance</i> (u) ; otherwise, a number greater than zero indicates that the country <u>does</u> monitor that substance under an MEA, a national PRTR or a licensing system
A5 _(n×u)	If $A4[n,u]>0$, then $A5[n,u]=1$ Otherwise, $A5[n,u]=0$	A '0' in a cell indicates that a given <i>country</i> (n) <u>does not</u> monitor a given <i>substance</i> (u) ; otherwise, a '1' indicates that the country <u>does</u> monitor that substance (under an MEA, a national PRTR or a licensing system)
$A6$ $(u \times n)$	=A5'	
A7E	A7E[,n] = m1 - A6[,n]	For the employee threshold approach, this matrix maps a given <i>substance</i> (u) still required to be monitored to comply with the Aarhus ACP to a given <i>country</i> (n). NB this applies to those substances that are not monitored elsewhere by a given country; and vector m1 becomes another vector if we consider another medium
A71E	If $A7E[n,u]=1$, then $A71E[n,u]=1$ Otherwise, $A71E[n,u]=0$	Same concept as matrix A7E mapped into binary combinations [0,1]
	A7C[,n] = m2 - A6[,n]	Same concept as matrix A7E with the difference that this matrix refers to the capacity threshold approach. NB vector m2 becomes another vector if we consider another medium
	If $A7C[n,u]=1$, then $A71C[n,u]=1$; Otherwise, $A71C[n,u]=0$	Same concept as matrix A71E, but this matrix refers to the capacity threshold approach
$A\overline{8}_{t} t = \{0, 1\}$	Input	Assigns a '0' to indicate that a given measurement (m), calculation (c)

		or estimation action (e) is not required for a given substance (u) in a given time period (t); otherwise, assigns a '1' if that MCE action is maximal
		required
A9, $t = \{0, 1\}$	-7.41T	Total number of facilities monitoring a given substance (u) in a given
(n×u)		<i>country</i> (<i>n</i>) in a given <i>time period</i> (<i>t</i>)
$a = t - \int 0 1$		Total number of facilities monitoring the sum of all substances in a
$\begin{cases} gu_t & t = \{0,1\} \\ (n \times 1) \end{cases}$	$ga_t[n] = \sum_{i=1}^{n} A9_t[n, j]$	given country (n) in a given time period (t)
$410 + - \int 0.1$		
$A10_t t = \{0,1\}$	$=A9_{i}$	
		Total number of facilities under the employee threshold approach that
$A11\Gamma$ $A= \begin{bmatrix} 0 & 1 \end{bmatrix}$		are required by the Aarhus ACP to monitor a given substance (u) not vet
$\prod_{\substack{(u \times n)}} L = \{0, 1\}$	$A11E_t[u, n] = A10_t[u, n]^* A71E[u, n]$	monitored for other purposes (national PRTR licences or MEA
		approximately in a given asympty (u) in a given time named (t)
		communents) in a given country (n) in a given time period (i)
$A11C_t$ $t = \{0, 1\}$	$A11C_{1}[u, n] = A10_{1}[u, n] * A71C[u, n]$	Same concept as matrix ATTE with the difference that this matrix uses
(u×n)		the capacity threshold approach
		Number of hours in a given <i>country</i> (n) that will be needed by all
A12E $t = \{0,1\}$	_ <u>49</u> <u>411</u> Γ	facilities for a given measurement (m), calculation (c) or estimation
$((m+c+e)\times n)$	$= Ao_t \cdot AIIL_t$	action (e) using the employee threshold approach in a given time period
		(t)
A10C (01]		Same concept as matrix A12E with the difference that this matrix uses
$\begin{array}{c} A12C_t t = \{0,1\}\\ ((m+c+e) \times n) \end{array}$	$=A8_t \cdot A11C_t$	the capacity threshold approach
-	$\Lambda 12E [i, n] = \Lambda 12E [i, n] * L [i, n]$	
12E + 101	$A13E_t[l, n] = A12E_t[l, n] \cap I_t[l, n]$	EMHs required for a given measurement (m), calculation (e) or
$\begin{array}{ccc} n 1 \\ 1 \\ ((m+c+e) \times n) \end{array} l = \{0, 1\}$		<i>estimation action (e)</i> in a given <i>country (n)</i> using the employee threshold
	$i = \{1,, (m + c + e)\}$	approach in a given <i>time period</i> (<i>t</i>)
	$L_{\tau}[u] = \begin{bmatrix} m_{\tau} + e \\ m_{\tau} + e \end{bmatrix}$	
$h_{2} + [0, 1]$	$nu_t[n] = \sum_{i=1}^{n} AISE_t[i, n]$	Total FMHs required in a given country (n) in a given time period (t)
$\lim_{(1\times n)} \iota = 10, 1$		using the employee threshold approach
	$i = \begin{bmatrix} 1 & (m + \alpha + \alpha) \end{bmatrix}$	using the employee uneshold approach
	$i = \{1,, (m + c + e)\}$	

$\begin{array}{c} A13C_t \\ ((m+c+e) \times n) \end{array} t = \{0,1\} \end{array}$	$A13C_{i}[i,n] = A12C_{i}[i,n] * I_{i}[i,n]$ $i = \{1,,(m+c+e)\}$	Same concept as matrix A13E with the difference that this matrix uses the capacity threshold approach
$ia_{t}_{(1\times n)} t = \{0,1\}$	$ia_{t}[n] = \sum_{i=1}^{m+c+e} A_{13}C_{t}[i, n]$ $i = \{1,, (m+c+e)\}$	Same concept as vector <i>ha</i> with the difference that this vector uses the capacity threshold approach
U (n×1)	Input	Total number of facilities performing initial actions in a given <i>country</i> (n) . NB this applies only to the first reporting period (t=0)
$\begin{array}{c} x_t \\ \text{(mx1)} \end{array} t = \{0, 1\} \end{array}$	$x_0 = f(w)$ or input $x_1 = f(w)$ or $f(x_0)$ or input	Total number of reporting facilities in a given <i>country</i> (n) in a given <i>time period</i> (t) . NB this is equal to the total number of reports in a given <i>country</i> (n) in a given <i>time period</i> (t)
$\sum_{(n \times v)} Y$	Input	Total number of facilities performing initial actions in a given <i>country</i> (n) and given <i>activity</i> (v) . NB this applies only to the first reporting period (t=0)
$\sum_{(n\times v)} t = \{0,1\}$	$Z_0 = f(Y) \text{ or input}$ $Z_1 = f(Y) \text{ or } f(Z_0) \text{ or input}$	Number of facilities in a given country (n) and in a given activity (v) and in a given time period (t)
m1 (u<1)	Input	A '1' is assigned if a given <i>substance</i> (u) <u>is</u> required to be monitored by the Aarhus ACP and concerns emission releases to air, using the employee threshold regime; <u>otherwise</u> , a '0' is assigned
$m_{(u \times 1)}$	Input	Same concept as vector $m1$, but using the capacity threshold regime
m3 (u×1)	Input	Same concept as vector $m1$, but relates to emission releases to water
<u>m4</u> (u×1)	Input	Same concept as vector $m3$, but using the capacity threshold regime
m5 (u×1)	Input	Same concept as vector $m1$, but relates to emission releases to land
<u>m6</u> (u×1)	Input	Same concept as vector $m5$, but using the capacity threshold regime
m7 (u×1)	Input	Same concept as vector $m1$, but relates to transfers of water waste

		{relevant?}
<u>m8</u> (u×1)	Input	Same concept as vector $m7$, but using the capacity threshold regime
m9 (u×1)	Input	Same concept as vector <i>m</i> 1, but relates to transfers of waste under the pollutant specific regime {does this exist under employee threshold approach?}
$m10_{(u \times 1)}$	Input	Same concept as vector $m9$, but using the capacity threshold regime
m11 (u×1)	Input	Same concept as vector <i>m</i> 1, but relates to transfers of hazardous waste under the waste-specific regime {does this exist under employee threshold approach?}
$m_{(u \times 1)}^{12}$	Input	Same concept as vector $m11$, but using the capacity threshold regime
m13 (ux1)	Input	Same concept as vector <i>m</i> 1, but relates to transfers of non-hazardous waste under the waste-specific regime {does this exist under the employee threshold approach?}
$m_{(u \times 1)}^{14}$	Input	Same concept as vector $m13$, but using the capacity threshold regime
$r_{(n\times 1)}^{1} t = \{0,1\}$	If decentralised regulator: $r1_{i}[n]=1$; Otherwise: $r1_{i}[n]=0$ (Input)	Indicates whether coordination costs included (i.e. in the case of a decentralised regulatory structure) in a given <i>country</i> (n)
$r2_{t} t = \{0,1\}$	Input	Percentage of additional engineers' working hours needed to coordinate the decentralized operations in a given <i>country</i> (n)
$r3_t t = \{0,1\}$	Input	Same concept as vector r2 with the difference that this vector monitors the required additional working time by the administrator
$r4_{t} t = \{0,1\}$	Input	Number of fixed hours of engineer required to undertake tasks if regulator has centralized operations in a given <i>country</i> (n)
$r5_{t} t = \{0,1\}$	$r5_{t}[n] = r4_{t}[n] * (1 + r1_{t}[n] * r2_{t}[n])$	Number of fixed hours engineer required to undertake tasks regardless of whether regulator is centralised or not in a given <i>country</i> (n) .
$r_{(n\times 1)} r_{(n\times 1)} t = \{0,1\}$	Input	Same concept as vector r4 with the difference that this vector applies to the administrator's time

$r7_{t} t = \{0,1\}$	$r7_{t}[n] = r6_{t}[n] * (1 + r1_{t}[n] * r3_{t}[n])$	Same concept as vector r5 with the difference that this vector applies to the administrator's time
$r8_{t} t = \{0, 1\}$	Input	Hours of engineers' time required per report to process the PRTR data in a given <i>country</i> (n)
$r9_{t}_{(n\times 1)}$ $t = \{0,1\}$	Input	Same concept as vector r8 with the difference that this vector applies to the administrator's time
$r_{(n\times 1)}^{10}$ $t = \{0, 1\}$	$r10_t[n] = r8_t[n] * \frac{gtotal_t[n]}{x_t[n]}$	Total number of variable hours required by the engineer in a given $country(n)$
$r11_{t}$ $t = \{0,1\}$	$r11_t[n] = r9_t[n] * \frac{gtotal_t[n]}{x_t[n]}$	Same concept as vector r10 with the difference that this vector applies to the administrator's time
$r_{(n\times 1)}^{12}$ $t = \{0, 1\}$	$=r5_{t}+r10_{t}$	Total hours of engineer's time required in a given <i>country</i> (n)
$r_{(n\times 1)}^{13}$ $t = \{0,1\}$	$= r7_{t} + r11_{t}$	Same concept as vector r12 with the difference that this vector applies to the administrator's time
$r14_{t}$ $t = \{0,1\}$	Input	Number of annual working hours of an engineer in a given <i>country</i> (n)
$r_{(n\times 1)}^{15} t = \{0,1\}$	Input	Same concept as vector r14 with the difference that this vector applies to the number of annual working hours of an administrator
$r_{(n\times 1)}^{16}$ $t = \{0, 1\}$	$r16_{i}[n] = \frac{r12_{i}[n]}{r14_{i}[n]}$	Number of required engineers in a given <i>country</i> (n)
$r_{(n\times 1)}^{17}t = \{0,1\}$	$r17_{t}[n] = \frac{r13_{t}[n]}{r15_{t}[n]}$	Same concept as vector r16 with the difference that this vector applies to number of required administrators
$r_{(n\times 1)}^{18}$ $t = \{0,1\}$	Input	Employee benefits (as % of gross salary) in a given <i>country</i> (n)
$\begin{array}{cc} r19_{t} & t = \{0, 1\} \\ rx1 & t = \{0, 1\} \end{array}$	Input	OH costs for engineer (as % of gross salary) in a given <i>country</i> (n)
$r_{(n\times 1)}^{20}$ $t = \{0,1\}$	Input	Same concept as vector r19 with the difference that this vector applies to the administrator's OH costs

$r21, t = \{0, 1\}$	Input	Gross annual salary of an engineer working for the regulator in a given
(n×1)		<i>country</i> (<i>n</i>)
$r22, t = \{0, 1\}$	Input	Same concept as vector r21 with the difference that this vector applies to
(n×1) ¹		the administrator's gross annual salary
$r23, t = \{0,1\}$	Input	Income tax rate per regulator employee in a given <i>country</i> (<i>n</i>). {needed
(n×1) ^r		only if we calculate the loaded salary using the net salary}
$r24, t = \{0,1\}$	r21[n] - r21[n] * (1 + r18[n] + r19[n])	Loaded salary per engineer in a given <i>country</i> (n) {if we use net salary,
(n×1) ^r	$124_t[n] - 121_t[n] (1 + 10_t[n] + 10_t[n])$	r24 has to be adjusted to consider that}
		Same concept as vector r24 with the difference that this vector applies to
$r_{(n\times 1)}^{25}$ $t = \{0, 1\}$	$r25_{t}[n] = r22_{t}[n]^{*}(1 + r18_{t}[n] + r20_{t}[n])$	the administrator's salary {if we use net salary, r25 has to be adjusted to
		consider that }
r_{26} , $t = \{0,1\}$	*26[n] = *24[n] * *16[n]	Total loaded salary bill for engineers (i.e. labour cost for engineers) in a
(n×1)	$120_{t}[n] - 124_{t}[n] + 10_{t}[n]$	given <i>country</i> (<i>n</i>)
$r27, t = \{0,1\}$	*27 [n] = *25 [n] * *17 [n]	Same concept as vector r26 with the difference that this vector applies to
(n×1)	$121_{i}[n] - 123_{i}[n] + 11_{i}[n]$	the administrator's salary
$r_{28_t} t = \{0, 1\}$	$= r26_{t} + r27_{t}$	Total loaded salary (i.e. labour cost) in a given <i>country</i> (n)
$r29 t = \{0, 1\}$	Input	
$(n \times 1)$ $t = [0,1]$	mput	Fixed II cost in a given <i>country</i> (<i>n</i>)
$r_{(n\times 1)}^{30}$ $t = \{0,1\}$	Input	Variable IT cost per number of pollutants reported in a given <i>country</i> (n)
$r31_{(n\times 1)}$ $t = \{0,1\}$	$r31_{i}[n] = r30_{i}[n] * gtotal_{i}[n]$	Total variable IT cost in a given <i>country</i> (n)
$r32_{t}$ $t = \{0,1\}$	$= r29_{t} + r31_{t}$	Total IT cost in a given <i>country</i> (<i>n</i>)
r_{33_t} $t = \{0, 1\}$	$=r28_{t}+r32_{t}$	Total cost to regulator in a given <i>country</i> (n)
(n×1)	1 1	Total notional post in a given sountry (n) in a given time nerical (4) using
$ts_t t = \{0, 1\}$	$=s_t + r33_t$	the ampleties threshold approach
(10.2)		Tetel actional action approach
$tt_t t = \{0, 1\}$	$=t_t + r33_t$	I otal national cost in a given <i>country</i> (n) in a given <i>time period</i> (t) using
(n×1)		the capacity threshold approach

Notes: t=time period $\{0,1\}$ n=country $\{1,...,56\}$ s=facility staff type $\{1,...,4\}$ p=general initial action $\{1,...,5\}$ q=general final action $\{1,...,30\}$ z=(p+q)*s m=measurement action $\{1,...,30\}$ c=calculation action $\{1,...,30\}$ e=estimation action $\{1,...,30\}$ y=(m+c+e)*s u=substance $\{1,...,86\}$ v=activity $\{1,...,67\}$ ℓ =MEA $\{1,...,11\}$ o=national PRTR $\{1,...,6\}$