
● I’ll talk a little bit about service deployment and the 
use of cloud technology in the context of the I3S 
work, specifically Work Package 3

● And a little bit about some of the base 
technologies, and base techniques we explore 
within the project.

● There is a tight connection with Work Package 2 
which works on the architecture side of things

● I’ll dive into some technical concepts, but as 
everyone knows technology never solves 
everything. 

● The way we organize how we work is also key to 
survive the digital transformation.



“CSPA in practice”

● Using and TESTING the concept developet within 
CSPA

● Getting the hands dirty and just do it.
● Building competency and awareness of cloud native 

practice which we want to share with the community

Trial “services” - some of them are really applications

● PXWeb
● Relais
● Arc



● Evolution from physical to virtualization.
● Small machines that only runs what’s needed. 
● Scaleability (if done right) (state, ephemeral), 

Ability to automate (if done right), Pet vs. Cattle
● Identical environment, that are easily 

reproduced using CODE.
● Can be used for packaging, and distributing 

complete set of services and applications
● Docker Hub provides ready made docker 

images, and templates, and it support 
uploading your service/app as an image which 



can be downloaded an run.





BUT! Containers are not enough 

● It creates another layer - can (if not automated, 
and unmanaged) create more complexity 

● You need more than containers to be able to take 
full advantage of containers

● You also need a flexible infrastructure (using 
cloud or cloud native technologies).
a. How do you handle scale? 
b. Orchestration of services?
c. How do you handle security?

i. Concepts like Zero Trust
ii. Policies



● Microservices is not necessarily the goal -> 
Flexibility is. You can achieve this as modular 
monoliths as well. We can have another 
presentation where this is the theme. 



Infrastructure as code 
● Provision networks, storage and 

databases, orchestration clusters
● And it gives you repeatable 

deployments!
● Versioned infrastructure (because your 

infrastructure is code).
● Use-case specific deployments -> Just 

need something for developing a new 
service, or 

● Infrastructure management at scale -> 
need more memory? More nodes in the 



cluster, another database. Just check in 
the code.

● Application automation -> Tons of open 
source tool chains 



CI/CD

● Repeatability, and Automation
● Automated build and deployments
● Automated testing
● Can be used without being in cloud
● Short distance between your commit and 

having the code in production



● DevOps
● Small releases OFTEN
● Since infrastructure is code
● Combination of ops and dev
● Automation, virtualization, and smart tool 

choices. Boring, repetitive work is automated
● Less handover
● Fail fast
● Organizational change?



● Many of you probably know about this.
● These talks about organization (of teams). 

Accellerate talks about the result of a scientific 
analysis of the impact of devops practises in 
organizations. 

● On a management level, this is recommended 
reading; Regardless of how bureaucratic your 
organization is, there are ways of improving 
organizational performance.

● Digital transform requires more than 
technology



● As promised in the abstract, although we’re running out of 
time I’m going to introduce a couple of concepts thats not 
impossible on a traditional plattform, but infinetly easier with 
cloud native tool chains because of low cost of creating 
paralell infrastructure, and advanced nework routing. 

● Canary Deployment is a pattern for rolling out functionality to 
just SOME users not all

○ Beta testing
○ Usability testing
○ Load tests 
○ https://medium.com/containers-101/fully-automated-canary-

deployments-in-kubernetes-70a671105273
● Secrets handling

○ The ability to handle passwords, keys and other secrets 
without revealing them as plain text in your code

○ Does not require cloud, but is easier with cloud native 
toolchains

○ Always encrypt your secrets in transit and at rest

https://medium.com/containers-101/fully-automated-canary-deployments-in-kubernetes-70a671105273


○ Never commit secrets into your code 
repositories@Instead, inject secrets via an environment 
variable into your app

○ 12 factor application. ->* https://12factor.net/config

https://12factor.net/config


● Thank you
● Questions


