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Abstract. We extend a disclosure risk measure defined for population based frequency
tables to sample based frequency tables. The disclosure risk measure is based on in-
formation theoretical expressions, such as entropy and conditional entropy, that reflect
the properties of attribute disclosure. To estimate the disclosure risk of a sample based
frequency table we need to take into account the underlying population and therefore
need both the population and sample frequencies. However, population frequencies might
not be known and therefore they must be estimated from the sample. We consider two
probabilistic models, a log-linear model and a so-called Pdlya urn model, to estimate the
population frequencies. Numerical results suggest that the Pdélya urn model may be a
feasible alternative to the log-linear model for estimating population frequencies and the
disclosure risk measure.

1 Introduction

Statistical agencies measure the disclosure risk before releasing statistical outputs,
such as frequency tables. This work discusses how information theoretical defini-
tions, such as entropy and conditional entropy, can be employed to measure the
disclosure risk in two-dimensional sample based frequency tables. A similar ap-
proach has been followed and a disclosure risk measure has been introduced in [1]
for population based frequency tables. However, there has been no attempt to em-
ploy a similar disclosure risk measure to sample based tables. In this paper we show
that the disclosure risk measure can be applied to two-dimensional sample based
tables. The disclosure risk measure reflects the properties of attribute disclosure
properly as set out in [1].

The population from which a sample is drawn may be known or unknown to the
statistical agency. The disclosure risk assessment of a sample based table is more
straightforward in the former case. If the population is unknown, the population
frequencies can be estimated from the sample. We then use the estimated population
based table to estimate the disclosure risk of the sample based table.
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The outline of the paper is as follows. In Section 2 we introduce the notation we
follow throughout the paper. Section 3 describes how the entropy and the conditional
entropy can be applied to assess disclosure risk in tabular data. Section 4 presents the
disclosure risk measure. Section 5 proposes two models for estimating the population
frequencies and the disclosure risk measure when the population is unknown. A
simulation study with numerical results can be found in Section 6, followed by a
conclusion in Section 7.

2 Notation

The frequency tables we deal with have K cells. Table cells are denoted C' =
{c1,¢2,...,cx}. The (potentially unknown) population based frequencies are F' =
(F1, Fy, ..., Fi), and their sample based counterparts are denoted f = (f1, fo, ..., fK)-
The population size and the sample size are N = Zfil F; and n = Zfil fi, respec-
tively. The set of individuals of the population is I = {ai,as,...,anx}. The set of
sampled individuals, denoted by Is = {b1, b2, ...,b,}, is a subset of the population,
Is C 1.

In order to present our results, we need to introduce two random variables. The
variables, X and Y, provide the classification of individuals into table cells for the
whole population (X) and for the sampled individuals (V).

X:1-C,
Y215—>C.

X is an extension of Y in the following sense. If we restrict X to Ig, then we will
get Y, since Ig C I and an individual in Ig is classified in the same table cell by X
and Y. Note that X is not always known in practice.

Denote the distribution of X by P = (p1,pe,...,px) = (ﬂ Iy ...,FWK), while

that of Y by Q = (1,42, - .-, qx) = (f1 2o f—K)

n’n’ ’'n

Estimated population frequencies are referred to as F' = (Fl, Ey, ... , Fr).

>

3 Entropy and conditional entropy

The basis of the proposed disclosure risk measure is the entropy. The entropy of X
is given as follows.

(1)

ZIﬁj
ZI’1j

K
Z Pr(X ) - log Pr(X Z

Note that H(X) is never negative. It takes its maximum value if (and only if)
F is uniform. The maximum value is log K.



The entropy of Y may be defined similarly. Since (1) depends only on the F'
table, we sometimes refer to H(X) as the entropy of F'.

The conditional entropy of two variables also has an important role in our disclo-
sure risk measure. Since the domain of X and that of Y are different, the conditional
entropy of X and Y cannot be defined directly. In order to calculate the conditional
entropy, we modify the variables.

First we define a new set of (imaginary) individuals, denoted by I as follows. If
we multiply F' by n and f by N, then we get the n- F' = (n- Fy,n- Fy,...,n- Fkg)
and N-f=(N-fi,N-fa,...,N- fg) frequency tables. Note that the entropy of F’
is equal to that of n - ' and the entropy of f is the same as that of N - f. It is easy
to see that Zfil n-F, = Zfil N - f; = n- N. Therefore n- N imaginary individuals
contribute to each table. We assume that the same imaginary individuals contribute
to the two tables. This set of individuals is 1. The two variables are

X:I—=C
and
Y:I—C.

The conditional entropy, defined below, depends on the PT(X' = cilff = ¢j)
conditional probabilities. We have not defined the probabilities unambigously, since
we have to define for each imaginary individual where the individual falls by both
X and Y.

We assume that X and Y are as ’similar’ to each other as possible. This as-
sumption means that the maximum possible number of individuals fall into the
same category by X and Y. For instance, if n- F; < N - f1, then the n- F} imaginary
individuals that fall in ¢; by X also fall in ¢; by Y. This assumption reduces the
number of possible (X Y) pairs. Instead of selecting one of the possible pairs, we
use the average PT(X = cZ|Y = ¢;) conditional probabilities over the possible pairs
in order to define the conditional entropy in (2). More details can be found in [1].

We define the conditional entropy of X and Y as follows.

H(X|Y)=HX|Y)=

— Z Pr(Y =c¢;)-» Pr(X =¢lY =¢)) log Pr(X =¢|Y =¢) (2)

i=1

The conditional entropy is always smaller or equal to the entropy, H(X|Y) <
H(X) = H(X).



4 The disclosure risk measure

4.1 The disclosure risk measure for population based frequency tables

The disclosure risk measure, which has been introduced for population based fre-
quency tables, is a weighted average as follows.

|D| H(X) 1 1
Ri(F,w) =w - — |1l ——=) —ws- -1 3
Wz e b gk )~y ey Y
Here D is the set of zeroes in the population based table, therefore |D|/K is the
proportion of zeroes. w = (wy,ws,ws) is a vector of weights, w; > 0,7 = 1,2,3,

Z?:l W; = 1.

4.2 The disclosure risk measure for sample based frequency tables

While population based tables include every individual, only selected individuals
contribute to sample based frequency tables. Sampling can be considered as a spe-
cial statistical disclosure control (SDC) method. The smaller number of individuals
in sample based tables ensures protection against attribute disclosure to a certain
extent. An intruder faces more uncertainty in a sample based table than in a popu-
lation based table. Zeroes in a sample based table seemingly increase the chance of
attribute disclosure. However, a zero in a sample based table is not necessarily zero
in the population based table.
A disclosure risk measure for sample based frequency tables (f) is as follows.

|D| }DUE}
DNE
R2(F7f7w>:w1'(7) +

Here E is the set of zeroes in the sample based table and e is the base of the
natural logarithm. The above disclosure risk measure was developed for perturbed
population based frequency tables. Since sampling can be considered as an SDC
method, the formula can be applied directly to sample based tables. Note that the
power of the first term reduces as follows since in our case D C E.

IDUE| |E|
DNE| |D|

(4)

We assume that the population size (N) is known to the statistical agency, therefore
the third term of the above formula can be calculated with ease. Our aim is to
estimate H(X), H(X|Y") and |D| from the sample based table when the population
frequencies are unknown. In this paper, this aim is achieved by estimating popula-
tion frequencies. From the estimated population frequencies the above mentioned



quantities can be calculated as for known population based tables. The population
frequencies may be estimated from the sample by probabilistic models.

5 Models to estimate population frequencies

We present numerical results in Section 6 using two modelling approaches for esti-
mating population frequencies, a log-linear model approach and a so-called Pdlya
urn model approach. The results are derived from generated and real population
based tables in order to assess the estimation error arising from the sampling in the
first case and from the sampling and estimation of population parameters in the
second case.

5.1 Log-linear model approach

A sample based frequency table may contain zero cells that have positive values in
the population based table due to the random sampling. Therefore cell probabilities
might not be reflected properly in a sample based table. Log-linear models can com-
pensate for sample-based (random) zero cells and introduce positive cell probabilities
by taking the table structure into account. On the other hand, log-linear models
can also estimate positive cell probabilities when there should be a true population
(structural) zero.
We apply a log-linear model to two-dimensional (sample based) frequency tables.
In this situation we can only include main effects in the mode which will have the
effect of estimating positive cell values even for those cells that are true (structural)
zeroes in the population.
Denote the sum of row ¢ by n;, and that of column j by n,;. The expected cell
count under the log-linear model is
A Nie * Tej
Hij = n

Hij
"

Dividing the above formula by n provides (estimated) cell probabilities p;; =

5.2 Poéblya urn model approach

The urn model has been employed in [8] to estimate population uniques in a fre-
quency table. Now we use a similar model to estimate all population frequencies.

The model starts with positive sample based frequencies. The frequencies are
represented by coloured balls in an urn. The urn contains f; > 0 balls of colour 1,
f2 > 0 balls of colour 2, etc. In addition to the coloured balls, 6 black balls are also
placed into the urn, where 6 is a parameter to be estimated. In each step we draw
a ball from the urn. If it is a coloured ball, then we replace it and add a new ball
of the same colour to the urn. If the ball we draw is black, then the ball is replaced
and another of a new colour is placed into the urn. The balls of new colours account
for sample zeroes.



In our case there might be true zeroes in the sample based table, therefore we do
not assume that all sample frequencies are positive. However, zeroes do not influence
the estimated population frequencies.

The estimation of the 6 parameter has an impact on the number of newly in-
troduced frequencies. The number of zeroes in the population based table plays
an important role in the estimation of # and in our disclosure risk measure with
respect to the first term in (4). A high 6 might result in a large number of new
frequencies, therefore the number of zeroes in the population based table might be
underestimated. Similarly, a low # might imply a high number of population zeroes.
We determine 6 according to the number of zeroes in the population based table.

First assume that |D| is known. The number of cells that are zeroes in the
sample based table but positive in the population based table is |E| — |D|. Denote
W., z=1,2,..., N —n, an indicator variable as follows.

W — 1 if the zth draw is a black ball
=10 if the zth draw is a coloured ball

The expected number of new colours is E(3XY"W,) = ¥ " E(W.). The total

number of balls before the zth draw is n + 6 + z — 1. Since the number of black
balls is constant at #, therefore E (W) We obtain # by solving the

T ntlt+z-1
following equation (numerically):
N—n 0
El—|D| = _ . 5
w8 6

Assume now that |D| is unknown. In order to use (5), we need to estimate |D)|
from the sample based table. Section 9.8 of [2] provides expected frequencies of
frequencies. The expected number of zeroes is given by the following formula.

K

|D| = Z(l —p)V,
i=1
where p; is the probability of cell ¢;. We estimate p;, t = 1,2,..., K by applying an
independent log-linear model to the sample based table.
Therefore, (5) can be rewritten as follows.

- N—n 9
E|l—|D| = .
B[ = 1D] ;n—l—9+z—1 (6)

We can solve (6) numerically to obtain the estimate 0.



6 Simulation study

In this section we present results of a simulation study to assess the estimation error
of the disclosure risk measure in (4). We use a real population based table and a
table that is generated according to known model parameters estimated from the
real table. The aim is to assess the estimation error arising from sampling alone and
the estimation error arising from both sampling and estimated model parameters.

6.1 Data

The dataset we used is an extract from the 2001 UK census data. The dataset
consists of N = 2449 individuals of 10 selected output areas. The output area (10
output areas) x religion two-dimensional table has K = 90 cells. The frequencies
are shown in Table 1.

81 0 0 1 17 1 1 83 18
1332 4 2 0 0 1 36 16
130 0 0 0 22 4 1 61 40
173 0 0 1 14 4 1 97 22
142 2 5 0 15 6 1 37 21
129 0 0 0 0 0 1 69 20
1182 0 2 24 9 1 38 20
130 0 0 0 34 1 1 82 32
148 3 0 0 0 2 1 38 21
136 1 2 0 13 0 0 55 16

Table 1: Original frequency table

To obtain the generated population table for assessing the log-linear model ap-
proach, we applied the log-linear model with main effects on Table 1. The estimated

ASTM

cell probabilities, denoted by (p5™, p5i™, ..., pii™), were then used as the parameters

ASIm ASTM

of a multinomial distribution. We drew N individuals from Multinom(N; p5"™, p3™,

ASTM

.., D5%™). When assessing the estimation error arising from sampling alone, we use
these same parameters (p§™, p5™, ..., p5im) for estimating the disclosure risk mea-
sure.

To obtain the generated population table for assessing the Pdlya urn model
approach, we use 6 given in (5) to generate the population based frequencies from

the sample based frequencies.

6.2 Simulation method

For the simulation study, we drew 1000 simple random samples from the (original
or generated) population using two sample fractions of 0.1 and 0.05. Ry(F, f,w)
can be calculated on the (original or generated) population based table for each of
the sample based tables. The average of the Ry(F, f,w) values is considered as the

7



‘original disclosure risk’. For this simulation, we use the following weights in the
disclosure risk measure: w = (0.1,0.8,0.1).

When population frequencies are assumed unknown, we need to estimate them
from the sample based table. In the log-linear approach, for the case of the gen-
erated population table with known parameters, we estimate the population fre-
quencies by drawing N — n individuals from Multinom(N — n; pi™, ps™, ... p5m)
and adding these frequencies to the respective sample-based table. For the case
of the real population table, we estimate the population frequencies by applying
the log-linear model with main effects to the sample-based table (f). The result-
ing table provides estimated cell probabilities. Denote them by (¢, 45, ..., %),
where the superscript S refers to the sample. N — n individuals are drawn from
Multinom(N — n;¢7,45,...,q%), and are then added to the sample-based table,
thereby estimating the population frequencies.

In the Pélya urn approach, for the case of the generated population table we use
0 given by (5) and for the case of the real population table, we estimate 6 on each
of the sample based tables as defined in (6).

The simulation is carried out as follows for each sample fraction and for each
(original or generated) population. On each of the 1000 sample-based tables we
estimate the population frequencies 1000 times. For each estimated population-
based table (ﬁ’ ) of each sample-based table we obtain an estimated disclosure risk
measure (Ry(F, f,w)). Note that the overall number of the Ry(F, f,w) values is
equal to 1000 -1000. The average of the RQ(F , f,w) values is considered as the final
‘estimated disclosure risk’.

6.3 Numerical results

Table 2 presents the results of the simulation study using both the generated and
real population based tables and two sampling fractions 0.1 and 0.05. We compare
the ’original disclosure risk’ with the 'estimated disclosure risk’. The weights for the
disclosure risk measure are w = (0.1,0.8,0.1).

Generated Original disc. risk Log-linear model Pélya urn model
and real data Ro(F, £,(0.1,08,0.1)) Ra(F, f,(0.1,0.8,0.1)) Ra(F,f,(0.1,0.8,0.1))

Sampling fr.  Mean St. dev. Mean St. dev. Mean St. dev.

Generated table 0.1 0.1538 0.0043 0.1568 0.0039 - -

(log-linear m.) 0.05 0.1427 0.0059 0.1416 0.0054 - -
Generated table 0.1 0.1694 0.0049 - - 0.1758 0.0053
(Pélya urn m.) 0.05 0.1535 0.0061 - - 0.1640 0.0057
Real 0.1 0.1697 0.0048 0.1715 0.0173 0.1764 0.0186
table 0.05 0.1535 0.0061 0.1731 0.0254 0.1821 0.0283

Table 2: Results of disclosure risk measures on generated and real population based
tables

For the log-linear model, using the generated population based table with known
parameters under the log-linear model, we see that we can obtain close estimates to



the original disclosure risk measures when only sampling error is considered. The
estimated disclosure risk measure based on the real population table is slightly higher
than the original disclosure risk. The overestimation is worse for the smaller sample
fraction.

The Pdélya urn modelling approach provides only slightly less accurate estimates
than the log-linear modelling approach but there appears to be overestimation both
in the generated table and the real population table.

7 Conclusion

In this paper, we present an information theoretical based disclosure risk measure
for two-dimensional sample based tables. Under the generated population based
table with known parameters, the disclosure risk can be estimated accurately and
therefore the estimation error arising from the sampling alone appears to be un-
biased. However, the estimated disclosure risk for a real population based table
where we need to account for the estimating of the parameters from the sample
based table is less accurate. The Pélya urn model approach is a feasible alternative
to the log-linear model approach. Further reseach needs to be carried out in order
to provide a more accurate approximation of the disclosure risk using different size
tables with varying sampling fractions and levels of random and true zero cells in
the population. In addition, further research is needed to explore the estimation of
disclosure risk in higher dimensional tables.
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