Idea and Notation
Disclosure Risk Measure for Population Based Tables
Disclosure Risk Measure for Sample Based Tables
Models to Estimate Population Frequencies
Numerical Results
Summary

Disclosure Risk Measurement with Entropy in Two-Dimensional Sample Based Frequency Tables

L. Antal N. Shlomo M. Elliot laszlo.antal@postgrad.manchester.ac.uk

University of Manchester

Work Session on Statistical Data Confidentiality
Helsinki, 5 October 2015

- Idea and Notation
- 2 Disclosure Risk Measure for Population Based Tables
- 3 Disclosure Risk Measure for Sample Based Tables
- 4 Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
- 5 Numerical Results
- 6 Summary

Idea and Notation

Disclosure Risk Measure for Population Based Tables Disclosure Risk Measure for Sample Based Tables Models to Estimate Population Frequencies Numerical Results Summary

- Idea and Notation
- Disclosure Risk Measure for Population Based Tables
- Disclosure Risk Measure for Sample Based Tables
- Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
- 5 Numerical Results
- Summary

Idea and Notation

- We would like to measure the disclosure risk of sample based frequency tables
- A disclosure risk measure will be developed on the basis of information theoretical expressions

Notation

- Frequency table: $F = (F_1, F_2, \dots, F_K)$
- Population size: $N = \sum_{i=1}^{K} F_i$
- Sample based table: $f = (f_1, f_2, ..., f_K)$
- Sample size: $n = \sum_{i=1}^{K} f_i$
- Set of individuals: I
- Set of sampled individuals: I_S
- Set of table cells (categories): $C = \{c_1, c_2, \ldots, c_K\}$

Idea and Notation

Disclosure Risk Measure for Population Based Tables
Disclosure Risk Measure for Sample Based Tables

Models to Estimate Population Frequencies Numerical Results Summary

- Idea and Notation
- 2 Disclosure Risk Measure for Population Based Tables
- Disclosure Risk Measure for Sample Based Tables
- Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
- 5 Numerical Results
- 6 Summary

Disclosure Risk Measure for Population Based Tables

Disclosure Risk Measure for Sample Based Tables Models to Estimate Population Frequencies Numerical Results Summary

Two Random Variables

Categorization of individuals into table cells

Categorization of all individuals

$$X:I\to C$$

Categorization of sampled individuals

$$Y: I_S \rightarrow C$$

Disclosure Risk Measure for Population Based Tables

Disclosure Risk Measure for Sample Based Tables Models to Estimate Population Frequencies Numerical Results Summary

Entropy and Conditional Entropy

Entropy

$$H(X) = -\sum_{i=1}^{K} Pr(X = c_i) \cdot \log Pr(X = c_i)$$

Conditional Entropy

$$H(X|Y) = -\sum_{i=1}^{K} Pr(Y = c_i) \cdot \sum_{i=1}^{K} Pr(X = c_i|Y = c_j) \cdot \log Pr(X = c_i|Y = c_j)$$

$$0 \leq H(X|Y) \leq H(X)$$

Disclosure Risk Measure for Population Based Tables

Disclosure Risk Measure for Sample Based Tables Models to Estimate Population Frequencies Numerical Results Summary

Disclosure Risk Measure for Population Based Tables

Disclosure risk measure:

$$R_1(F, \textbf{\textit{w}}) = w_1 \cdot \frac{|D|}{K} + w_2 \cdot \left(1 - \frac{H(X)}{\log K}\right) - w_3 \cdot \frac{1}{\sqrt{N}} \cdot \log \frac{1}{e \cdot \sqrt{N}}$$

where

 $\mathbf{w} = (w_1, w_2, w_3)$ is a vector of weights, D is the set of zeroes in the population based table, e is the base of the natural logarithm

- Idea and Notation
- Disclosure Risk Measure for Population Based Tables
- 3 Disclosure Risk Measure for Sample Based Tables
- Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
- 5 Numerical Results
- 6 Summary

Disclosure Risk Measure for Sample Based Tables

Disclosure risk measure:

$$R_{2}(F, f, \mathbf{w}) = w_{1} \cdot \left(\frac{|D|}{K}\right)^{\frac{|D \cup E|}{|D \cap E|}} + w_{2} \cdot \left(1 - \frac{H(X)}{\log K}\right) \cdot \left(1 - \frac{H(X|Y)}{H(X)}\right) - w_{3} \cdot \frac{1}{\sqrt{N}} \cdot \log \frac{1}{e \cdot \sqrt{N}}$$

where

E is the set of zeroes in the sample based table

$$R_2(F,f,\boldsymbol{w}) \leq R_1(F,\boldsymbol{w})$$

Log-linear Model

- Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model

- Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model

Log-linear Model

- There might be sample zeroes that are not zeroes in the population based table
- Sample based tables might not reflect cell probabilities well
- Log-linear models, applied to samples based tables, provide better estimates of cell probabilities
- In two-dimension: only one model that is not saturated

$$\frac{n_{i\bullet}\cdot n_{\bullet j}}{n}$$

- Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model

Pólya Urn Model

- Balls in an urn
- f₁ balls of colour 1, f₂ balls of colour 2, etc.
- θ black balls, where θ is a parameter
- In each step we draw a ball from the urn
- If the ball is coloured, then we replace it and add a new ball of the same colour to the urn
- If the ball is black, then we replace it and add a ball of a new colour to the urn
- New colours compensate for sample zeroes

Estimation of θ

Number of cells that are zeroes in the sample based table but positive in the population based table:

$$|E| - |D|$$

Introduce

$$W_z = \left\{ egin{array}{ll} 1 & ext{if the } z ext{th draw is a black ball} \\ 0 & ext{if the } z ext{th draw is a coloured ball} \end{array} \right.$$

• We obtain θ by solving the following equation (numerically):

$$|E| - |D| = \sum_{z=1}^{N-n} E(W_z) = \sum_{z=1}^{N-n} \frac{\theta}{n + \theta + z - 1}$$

- Idea and Notation
- Disclosure Risk Measure for Population Based Tables
- Disclosure Risk Measure for Sample Based Tables
- Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
- 5 Numerical Results
- Summary

Data

- Data: extract from 2001 UK census data
- 10 selected output areas
- Output area \times religion table: K = 90 cells. N = 2449
- Generated and real data
- 1000 samples, 1000 estimated population based tables for each sample
- Original disclosure risk: average of 1000 values
- Estimated disclosure risk: average of 1000 · 1000 = 10⁶ values

Idea and Notation Disclosure Risk Measure for Population Based Tables Disclosure Risk Measure for Sample Based Tables Models to Estimate Population Frequencies Numerical Results Summary

Numerical Results

Generated		Original disc. risk		Log-linear model		Pólya urn model	
and real data		$R_2(F, f, (0.1, 0.8, 0.1))$		$R_2(\hat{F}, f, (0.1, 0.8, 0.1))$		$R_2(\hat{F}, f, (0.1, 0.8, 0.1))$	
•	Sampling fr.	Mean	St. dev.	Mean	St. dev.	Mean	St. dev.
Generated table	0.1	0.1538	0.0043	0.1568	0.0039	-	-
(log-linear m.)	0.05	0.1427	0.0059	0.1416	0.0054	-	-
Generated table	0.1	0.1694	0.0049	-	-	0.1758	0.0053
(Pólya urn m.)	0.05	0.1535	0.0061	-	-	0.1640	0.0057
Real	0.1	0.1697	0.0048	0.1715	0.0173	0.1764	0.0186
table	0.05	0.1535	0.0061	0.1731	0.0254	0.1821	0.0283

Table: Results of disclosure risk measures on generated and real population based tables

- - Log-linear Model
 - Pólya Urn Model
- Summary

Summary

- A disclosure risk measure for population based tables has been extended to measure the disclosure risk of sample based tables
- Two models have been used to estimate population frequencies
- The results show relatively good estimates of the disclosure risk
- Further research should be done to measure the disclosure risk of higher dimensional frequency tables

Thank you for your attention!