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What shall we do with the ratios? 
 
Sarah Giessing* 
* Statistisches Bundesamt, 65180 Wiesbaden, Germany, Sarah.Giessing@destatis.de 
 
Abstract: Traditionally, many statistical agencies protect magnitude tabular establishment data by cell 
suppression. Typical risk concepts, rules and techniques for cell suppression apply to data of an 
additive nature, i.e. sums of a quantitative variable. For tables presenting means, ratios or other 
indicators, it is often considered enough to suppress a cell only, if it relates to just a single unit. 
Exceptions from this simple rule are made, if a publication also presents tabulations of the enumerator 
or denominator variable (in case of a ratio), or the cell frequencies (in case of a mean). In those cases, 
it is obvious that cell suppressions must be consistent to avoid disclosure risks. 
This paper presents an idea for how to deal with indicator that are the ratio of two sums, in a context 
where sums are protected not through cell suppression, but through a perturbative method like 
stochastic noise. 
 

1 Introduction  
Literature offers numerous ideas how to protect statistical data by methods that 
perturb the data rather than attempting to avoid disclosure risks through partial 
suppression or reductions of detail. Some are tailored to protect data presented in 
aggregated format, i.e. tabular data which is the typical data release format for 
statistical agencies. In this paper we focus on perturbative post-tabular methods, 
masking the final output data, for example through (random) rounding or noise 
addition (see f.i. (Fraser and Wooton, 2005), (Giessing, 2011), or non-stochastic 
manipulation of the data (Castro and Gonzales, 2009)). All those methods typically 
apply to data of an additive nature, computed as sums of a quantitative (in the case of 
counts data: dichotomous) variable. 

When discussing a statistical disclosure control concept based on a perturbative 
approach with data managers of a statistical institute or with data users, typically a 
question like “What happens to time series data and ratios?” arises. Extending the 
rounding/noise strategy of (Giessing, 2012), the present paper proposes a strategy to 
handle such data. 

The paper is organized in six sections. Sec. 2 briefly recalls the rounding/noise 
strategy of (Giessing, 2011) which is then extended in sec. 3 to the case of ratios. 
Some illustration and results derived from an application to real data from German 
tourism statistics are presented in sec. 4. In section 5 we look at the disclosure risks. 
The paper finishes with a summary section.  
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2 Flexible Rounding Based on Post-tabularStochastic Noise 
This section briefly recalls the main concept of the methodology proposed in 
(Giessing, 2011, 2012). That methodology applies to data that are sums of a 
quantitative variable. 

The masking method proposed in (Giessing, 2011) requires a certain minimum 
deviation between true and masked cell value for sensitive cells. E.g., that the 
masked cell value is non-sensitive according to the sensitivity rule employed. This 
can be achieved by masking the largest contribution y1  of a table cell with original 
value Torig  and replacing it by y1

 post(T) when computing the perturbed cell value Tpost : 
To control the strength of the perturbation, choose parameters µ0 and 2

0σ . When a 
cell c is sensitive, multiply the largest contribution y1 by rc , where rc := 
(1 ± (µ0+ abs( zc ))) (zc drawn from a N(0, 2

0σ ) distribution1). When cell c is non-
sensitive, multiply y1 by (1 ± (abs( zc ))). When the method should correspond to the 
p% sensitivity rule, choose µ0:= 2*p/100. Then the noisy value Tpost of a sensitive 
true value Torig  becomes non-sensitive, i.e. |Tpost - y1- y2| ≥ p*y1, (y1 and y2 denoting 
the two largest contributions to Torig) as proven in (Giessing, 2012). 
(Giessing, 2012) explains also that (for fixed Tpost and y1) the confidence interval 
(2.1) [Tpost -y1(µ0+σ0ζγ ) ; Tpost +y1(µ0+ σ0 ζγ ) ] for Torig  has probability 2 γ – 1 
(ζγ  denote the γ-quantile of the standard normal distribution). (Giessing, 2012) 
proposes then to turn this confidence interval into a rounding interval: Compute its 
width 
(2.2) 2y1(µ0+σ0uγ ), select the power of 10 (10, 100, 1000, etc) “closest” to this width 
as rounding base b, and publish Tpost  rounded to the next multiple of b. 

3 A Flexible Rounding Strategy for Ratios based on Stochastic Noise 
This section elaborates an idea presented in (Chipperfield and Yu, 2011) for a simple 
special case. (Chipperfield and Yu, 2011) address the standard case for estimating 
regression coefficients in a regression model. Estimating a ratio can be regarded as a 
special case: we estimate parameter β1 of a simple two-variable regression model 
that assumes the regression line to pass through the origin, e.g. β0 =0. We consider 
two variables y and x, with n observations for both of them. Following the denotation 
used in (Chipperfield and Yu, 2011) with some adaptation to our simple special case, 
this means we consider fitting a regression model with parameter β  (e.g. the only 
parameter of the two-variable regression through the origin) using estimating 
function H(β):  
𝐻(𝛽) = � {𝑦𝑖 − 𝑓𝑖(𝛽)}𝑛

𝑖=1  , where 𝑓𝑖(𝛽) = 𝐸(𝑦𝑖|𝑥𝑖) = 𝛽𝑥𝑖. The solution to 𝐻(𝛽) = 0 
gives the estimate 𝛽̂. 

                                                 
1 Note, abs(zc) are then distributed according to a normal distribution truncated at zero. 
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In our simple case, solving � �𝑦𝑖 − 𝛽𝑥𝑖�
𝑛
𝑖=1 = 0 yields 𝛽̂ = ∑ 𝑦𝑖𝑛

𝑖=1
∑ 𝑥𝑖𝑛
𝑖=1

, i.e. the ratio 

𝛽̂ = 𝑌/𝑋, with enumerator 𝑌 = ∑ 𝑦𝑖𝑛
𝑖=1  and denominator 𝑋 = ∑ 𝑥𝑖𝑛

𝑖=1 . 
 
(Chipperfield and Yu, 2011) propose to perturb the estimate as follows: Instead of 
solving 𝐻(𝛽) = 0 and releasing 𝛽̂ , they suggest to solve 𝐻(𝛽) = 𝐸∗ and to release 
the resulting estimator 𝛽̂∗. 𝐸∗ is the perturbation introduced for disclosure limitation, 
𝐸∗ = 𝑢 ∙ 𝑒 where e denote the “maximum effect a record may have on the ratio”, 
computed as 𝑒 = max𝑖{|𝑦𝑖 − 𝑓𝑖(𝛽)|} and u noise drawn from a suitable random 
distribution. 

In our simple case, we have 𝑒 = max𝑖��𝑦𝑖 − 𝛽�𝑥𝑖�� = max𝑖 ��𝑦𝑖 −
𝑌

𝑋
𝑥𝑖��. 

(Chipperfield and Yu, 2011) propose a uniform distribution on the range (-1,1) for 
noise generation. The present paper, however, follows the approach of (Giessing, 
2011, 2012) to draw the noise from a normal N(0, 2

0σ ) distribution. 

Solving 𝐻(𝛽) = 𝐸∗ means then that we solve � �𝑦𝑖 − 𝛽𝑥𝑖�
𝑛
𝑖=1 = 𝑢 ∙ 𝑒. This yields 

𝛽̂∗ = �∑ 𝑦𝑖𝑛
𝑖=1 �−𝑢∙𝑒
∑ 𝑥𝑖𝑛
𝑖=1

= 𝑌
𝑋
− 𝑢∙𝑒

𝑋
= 𝛽� − 𝑢 𝑒

𝑋
 with noise u  drawn from a N(0, 2

βσ ) 

distribution. Then the confidence interval 

(3.1) �𝛽̂∗ − 𝜎𝛽𝜉𝛾
𝑒
𝑋

; 𝛽̂∗ + 𝜎𝛽𝜉𝛾
𝑒
𝑋
� for the original ratio 𝛽̂ has probability 2 γ – 1 

(𝜉𝛾  denote the γ-quantile of the standard normal distribution). 
 
The strategy suggested here is to fix a suitable parameter 𝜎𝛽 and release 𝛽̂∗ along 
with a confidence interval covering the true ratio with a ‘sensible’ probability. On the 
other hand, in the case of (tables of) ratios published by National Statistical Institutes 
which are widely used and not only by trained statisticians, it might be better to turn 
the confidence interval into a rounding interval as suggested in (Giessing, 2012): E.g. 
compute the width 
(3.2) 2𝜎𝛽𝜉𝛾

𝑒
𝑋

 of the confidence interval (4.1), select the power of 10 (10, 100, 1000, 
etc) “closest” to this width as rounding base b, and publish 𝛽̂∗ rounded to the next 
multiple of b. 

The question is now, if this method is ‘safe’ in a scenario, where the agency also 
releases rounded, noisy estimates for enumerator and denominator? Or does it thwart 
the disclosure control applied to the enumerator or denominator data? We will 
consider this question in section 5, after illustrating the method with some toy data in 
the following section. 
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4 Illustrative Example and Test Result 
This section first illustrates the method proposed using a few lines of toy example 
data, and then reports some preliminary results obtained with a real data set from 
German Tourism statistics. 

4.1 Illustrative Example 
Imagine two variables Y and X. Our toy dataset consists of data for three non-
sensitive cells. Table 1 displays the instance and the estimates users are left to derive 
on their own, if no special estimates like those of sec. 3 are offered. Table 2 presents 
the methodology of section 3, applied to the same data. 

For all three cells of the instance, we assume a value for the denominator variable 
X=1000 with largest contribution 𝑥1=300. The three lines of table 1 refer to those 
three cells. They show the cell value of the enumerator Y with its largest contribution 
(𝑦1) and the (true) ratio Y/X. The next columns display the noisy cell values Y* and 
X* computed according to (2.1). In all three cases u =1*0.05 is the absolute of the 
noise “drawn” from N(0, 2

0σ ) with 2
0σ =0,05 and the deviation sense is negative. 

Table 1 also displays the ratios obtained as ratios of the perturbed data Y*/X*, 
confidence interval bounds according to (2.2) for enumerator and denominator 
(𝑙𝑏𝑌, 𝑢𝑏𝑌, 𝑙𝑏𝑋, 𝑢𝑏𝑋), each obtained at level 𝜉𝛾=1, and finally the width of a 
confidence interval for the true ratio, obtained as  𝑢𝑏𝑌/ 𝑙𝑏𝑋 − 𝑙𝑏𝑌/𝑢𝑏𝑋. 

Y y1 Y/X Y* X* Y*/X* 𝒖𝒃𝒀∗  𝒍𝒃𝒀∗ 𝒖𝒃𝑿∗  𝒍𝒃𝑿∗ 
𝒖𝒃𝒀∗
𝒍𝒃𝑿∗

−
𝒍𝒃𝒀∗
𝒖𝒃𝑿∗

 

20 7 0.0200 19.65 985 0.0199 20 19.30 1030 1000 0.00126 
200 70 0.2000 196.5 985 0.1995 200 193.00 1030 1000 0.01262 

2000 700 2.00 1965 985 1.99 2000 1930.00 1030 1000 0.12621 
Table 1 Illustrative example: the case of no special estimates 

Table 2 extends the instance by data made up for e , e.g. the “maximum effect a 
record may have on the ratio”. The table consists of three blocks. Each block 
basically refers to the same instance, e.g. the same three cells, but with different 
values for the N(0, 2

βσ ) noise ( 2
βσ =0,05). Those three table 2 variants of the instance 

refer to negative deviation senses too. For every line of the instance, table 2 displays 
the estimate 𝛽̂∗ and its confidence interval width obtained according to (3.2) as 
2𝜎𝛽𝜉𝛾

𝑒
𝑋
 , at 𝜉𝛾 = 1. This width is then used to round the data, e.g. to eventually 

reduce the level of precision at which the data is displayed: 

For our three cells, assume the initial intention is to display the first two cells with 
d=4 places after the decimal separator (equivalent to a format in % with 2 decimal 
places), and the third cell with d=2 places after the decimal separator. For the 

rounding step, we compute 10𝑑𝛽̂∗ and 𝑏(= 10𝑟𝑜𝑢𝑛𝑑(𝑙𝑜𝑔10�2𝜎𝛽
𝑒
𝑋10

𝑑�)). The final 
column shows round(𝛽̂∗), e.g. 10𝑑𝛽̂∗ rounded to the next multiple of 10𝑏 and 
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divided afterwards by 10𝑑. Digits to be replaced by a zero due to the rounding are 
replaced by an asterisk here. 
e 𝜷�∗ 𝟏𝟎𝒅𝜷�∗ 𝟐𝝈𝜷

𝒆
𝑿 𝒃 round(𝜷�∗) 

u=1*0.05=0.05 
3 0.01985 198.5 0.0003 1 0.0199 

30 0.19850 1985 0.003 10 0.199* 
300 1.98500 19850 0.03 100 1.99** 

u =0.5*0.05=0.025 
3 0.01993 199.25 0.0003 1 0.0199 

30 0.19925 1992.5 0.003 10 0.199* 
300 1.99250 19925 0.03 100 1.99** 

u =2*0.05=0.1 
3 0.01970 197 0.0003 1 0.0197 

30 0.19700 1970 0.003 10 0.197* 
300 1.97000 19700 0.03 100 1.97** 

Table 2 Illustrative example: methodology of sec. 3. 

Comparing the confidence intervals of the two tables (last col. of table 1 vs. 4th col. 
of table 2), we find that the methodology of sec. 3 yields better results. The point 
estimates Y*/X* for the ratio in table 1 are slightly closer to the true value (compared 
to those displayed in col. 𝜷�∗ in the first three rows of table 2). But note, by changing 
the deviation sense for the denominator to the opposite of that of the enumerator, we 
would get the following, considerably poorer estimates: 0.01936, 0.19360 and 
1.93596.  

4.2 Test Results 
The methodology has been implemented for two test tables from German tourism 
statistics, each of them with results for about 400 table cells (most of them at 
municipality level). The ratio of the first test table is a change rate between two 
periods, taking values between 0.1 and 7. The ratio of the second test table is the 
capacity utilisation, e.g. the rate of nights spent as ratio to the number of beds offered 
by the establishments. It takes values between 0.9 % and 80 %. For both tables we 
observe promising results. With the data of the first table, for more than 97% of the 
table cells the relative deviation between true and perturbed ratio is below 2%. In the 
second table there are about 97% of table cells with a relative deviation below 0.2%. 

With one exception (observed at an extremely large value of the ratio), in the first 
table all confidence intervals obtained for the 𝛽̂∗estimate are smaller compared to 
those a user should assume for the “simple” estimate Y*/X* (e.g. � 𝑙𝑏𝑌∗

𝑢𝑏𝑋∗
; 𝑢𝑏𝑌∗
𝑙𝑏𝑋∗

� in the 
denotation of 4.1.). For the second table (of “small” ratios below 1), for about 7% of 
the cells the confidence interval of the simple estimate is the smaller one. So it seems 
the method tends to perform the better, the larger the ratios tend to be, as might be 
expected. 
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5 Addressing the Disclosure Risk Issue 
If, denominator and enumerator of a ratio, X or Y, are protected by a perturbative 
method, the ratio 𝑌/𝑋 must not be published in a way that yields disclosure risk for 
the true, unperturbed values of enumerator or denominator – even if both are non-
sensitive aggregates. Otherwise, this might create secondary disclosure risks for 
sensitive cells in tabulations of the enumerator or denominator variable. 

This section studies the following two disclosure risk scenarios: A user/intruder 
computes an interval for the enumerator by using the interval released for the ratio 
and the interval released for its denominator. The second scenario is the ‘reverse’ 
case: A user/intruder computes an interval for the denominator by using the interval 
released for the ratio and the interval released for its enumerator. We consider the 
release of the rounded ratio ‘thwarting’ the protection of enumerator or denominator, 
when the interval obtained by the intruder in this way tends to shrink compared to the 
respective rounding/confidence interval released by the agency. In 5.1 and 5.2 we 
show that this will not happen, if enumerator and denominator are non-sensitive 
cells, and if the agency uses suitable 𝜎𝛽 parameters for drawing the noise for the 
perturbation of the ratio.  

For sake of simplicity, we assume all data to be positive and we will look at the 
problems in terms of the confidence intervals, ignoring the final rounding step of the 
procedures of sections 2 and 3. 

5.1 Disclosure Risk for the Enumerator 
With probability 2 γ – 1 the true ratio 𝛽̂ is contained in the confidence interval (3.1), 
and X and Y are contained in intervals computed according to (2.1). For a fixed 
 γ , these interval bounds are released and hence known to the user/intruder2. So we 
have  

(5.1) 𝛽̂∗ − 𝜎𝛽𝜉𝛾
𝑒
𝑋
≤ 𝑌

𝑋
≤ 𝛽̂∗ + 𝜎𝛽𝜉𝛾

𝑒
𝑋

  

and (after change of denotation, replacing e.g. T by X, Tpost by 𝑋∗, 𝑦1 by 𝑥1), and 
using non-sensitivity of X (hence µ0=0) 

(5.2) 𝑋∗ − 𝜎𝑋𝜉𝛾𝑥1 ≤ 𝑋 ≤ 𝑋∗ + 𝜎𝛽𝜉𝛾𝑥1 , 

and (after another change of denotation, replacing e.g. T by Y, Tpost by 𝑌∗), and using 
non-sensitivity of Y (hence µ0=0) 

(5.3) 𝑌∗ − 𝜎0𝜉𝛾𝑦1 ≤ 𝑌 ≤ 𝑌∗ + 𝜎0𝜉𝛾𝑦1 . 

 

                                                 
2 As mentioned above, we ignore for now the rounding step of the procedure, assuming the exact confidence 

intervals to be released. 
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Obviously (5.1) is equivalent to 𝑋𝛽̂∗ − 𝜎𝛽𝜉𝛾𝑒 ≤ 𝑌 ≤ 𝑋𝛽̂∗ + 𝜎𝛽𝜉𝛾𝑒 . Using (5.2) it 
follows then �𝑋∗ − 𝜎0𝜉𝛾𝑥1�𝛽̂∗ − 𝜎𝛽𝜉𝛾𝑒 ≤ 𝑌 ≤ �𝑋∗ + 𝜎0𝜉𝛾𝑥1�𝛽̂∗ + 𝜎𝛽𝜉𝛾𝑒 , with a 

probability of at least �2γ– 1 �
2
 (or maybe larger, if the perturbations of X and 𝑌

𝑋
 are 

not independent). The interval given by these bounds is the interval we regard to be 
obtained by the intruder in our scenario. 

In the appendix (A.1), we show that it is always possible to choose 𝜎𝛽 (e.g. require: 
𝜎𝛽 ≥

𝜎0
�1−𝜉𝛾𝜎0�

) such that the width of that interval, �𝑋∗ + 𝜎0𝜉𝛾𝑥1�𝛽̂∗ + 𝜎𝛽𝜉𝛾𝑒 −

��𝑋∗ − 𝜎0𝜉𝛾𝑥1�𝛽̂∗ − 𝜎𝛽𝜉𝛾𝑒� is at least the width of the interval given by (5.3) , i.e. 
2𝜎0𝜉𝛾𝑦1. 

This means that the new interval for Y that can be obtained after release of the 
interval for 𝑌

𝑋
 does not tend to be smaller than the interval directly released for Y. 

Note, because the estimates 𝛽̂∗ and 𝑌∗ 𝑋∗⁄ are usually different, this does not mean 
that the new interval always covers the interval directly released for Y – the intervals 
may overlap only partially and occasionally the intersection may be small. On the 
other hand, both intervals are merely confidence intervals with a probability 
unknown to the user, so this kind of residual disclosure risk should be considered 
tolerable. 

 

5.2 Disclosure Risk for the Enumerator 
Like in 5.2, we have that with probability 2 γ – 1 the true ratio 𝛽̂ is contained in the 
confidence interval (3.1), and X and Y are contained in intervals computed according 
to (2.1). For a fixed  γ , these interval bounds are released and hence known to the 
user/intruder.  

Obviously (5.1) implies the following inequalities for X:  𝑌
𝛽�∗+𝜎𝛽𝜉𝛾

𝑒
𝑋
≤ 𝑋 ≤ 𝑌

𝛽�∗−𝜎𝛽𝜉𝛾
𝑒
𝑋
 

which is equivalent to 
𝑌𝛽�∗−𝜎𝛽𝜉𝛾

𝑌
𝑋𝑒

�𝛽�∗+𝜎𝛽𝜉𝛾
𝑒
𝑋��𝛽

�∗−𝜎𝛽𝜉𝛾
𝑒
𝑋�
≤ 𝑋 ≤

𝑌𝛽�∗+𝜎𝛽𝜉𝛾
𝑌
𝑋𝑒

�𝛽�∗+𝜎𝛽𝜉𝛾
𝑒
𝑋��𝛽

�∗−𝜎𝛽𝜉𝛾
𝑒
𝑋�

. Using (5.3) 

it follows then  
�𝑌∗−𝜎0𝜉𝛾𝑥1�𝛽�∗−𝜎𝛽𝜉𝛾

𝑌
𝑋𝑒

�𝛽�∗+𝜎𝛽𝜉𝛾
𝑒
𝑋��𝛽

�∗−𝜎𝛽𝜉𝛾
𝑒
𝑋�
≤ 𝑋 ≤

�𝑌∗+𝜎0𝜉𝛾𝑥1�𝛽�∗+𝜎𝛽𝜉𝛾
𝑌
𝑋𝑒

�𝛽�∗+𝜎𝛽𝜉𝛾
𝑒
𝑋��𝛽

�∗−𝜎𝛽𝜉𝛾
𝑒
𝑋�

. 

Like in 5.1, the interval given by these bounds is the new interval for X we regard to 
be obtained by the intruder in our scenario. In the appendix, A.2, we show that for 
larger levels of confidence it is possible to choose 𝜎𝛽 (for a start, require 𝜎𝛽 to exceed 

𝜎0
�1−2𝜉𝛾𝜎0�

) ) such that its width, 
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�𝑌∗+𝜎0𝜉𝛾𝑥1�𝛽�∗+𝜎𝛽𝜉𝛾
𝑌
𝑋𝑒

�𝛽�∗+𝜎𝛽𝜉𝛾
𝑒
𝑋��𝛽

�∗−𝜎𝛽𝜉𝛾
𝑒
𝑋�
−

�𝑌∗−𝜎0𝜉𝛾𝑥1�𝛽�∗−𝜎𝛽𝜉𝛾
𝑌
𝑋𝑒

�𝛽�∗+𝜎𝛽𝜉𝛾
𝑒
𝑋��𝛽

�∗−𝜎𝛽𝜉𝛾
𝑒
𝑋�

 , exceeds in most cases the width of the 

interval given by (5.2) , e.g. 2𝜎0𝜉𝛾𝑥1. 

Like in 5.1, this means that new interval for X that can be obtained after release of 
the interval for 𝑌

𝑋
 , tends not to be smaller as the interval directly released for X. 

6 Summary and Final Comments 
In the context of the post-tabular noise based on the disclosure control concept of 
(Giessing, 2012) and building on an idea of (Chipperfield and Yu, 2011), this paper 
has proposed a flexible rounding strategy for ratios also based on stochastic noise. 
Encouraging first test results are reported, observed with real life data from German 
Tourism Statistics. However, testing of the methodology is still work in progress, 
especially to prove the concepts suggested for establishing suitable parameters for 
the method. Another important issue for future work is to test, or eventually extend 
the method for special, important types of ratio data, like means, i.e. a magnitude 
variable divided by a count. 
The main contribution of the paper is a theoretical proof that the method proposed 
here is consistent with the approach of (Giessing, 2011) in the following sense: 
confidence intervals released according to the concept for the ratio data do not tend 
to inflict a substantial disclosure risk for respective enumerator and denominator 
data, if these are non-sensitive. Note that, otherwise, disclosure risk for such non-
sensitive data might in turn inflict a (secondary) disclosure risk for cells with 
sensitive enumerator or denominator cell values because of additive relations 
between table cells. 

Acknowledgement 

This work has been supported by the FP7-INFRASTRUCTURES-2010-1 project 
“DwB-Data without Boundaries”, number 262608. This support is appreciated. 
 
References 
Castro, J., Gonzalez, J.A., and Baena, D. (2009). User's and programmer's manual of 

the RCTA package, Technical Report DR 2009-01, Dept. of Statistics and 
Operations Research, Universitat Politecnica de Catalunya.  

Chipperfield, J., Yu, F. (2011). Protecting Confidentiality in a Remote Analysis 
Server for Tabulation and Analysis of Data, paper presented at the Joint 
UNECE/Eurostat Work Session on Statistical Data Confidentiality (Tarragona, 
2-4 December 2009) available at 

http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/52_Austr
alia.pdf 



 
 

 
 

9 

Fraser, B., Wooton, J. (2006). A proposed method for confidentialising tabular 
output to protect against differencing, in Monographs of Official Statistics. 
Work session on Statistical Data Confidentiality, Eurostat-Office for Official 
Publications of the European Communities, Luxembourg, 2006, pp. 299-302 

Giessing, S. (2011). Post-tabular Stochastic Noise to Protect Skewed Business Data, 
paper presented at the Joint UNECE/Eurostat Work Session on Statistical Data 
Confidentiality (Tarragona, 2-4 December 2009) available at 
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/47_G
iessing.pdf 

Giessing, S. (2012). Flexible Rounding Based on Consistent Post-tabular Stochastic 
Noise. In J. Domingo-Ferrer and I. Tinnirello (Eds.), Privacy in Statistical 
Databases, 22-34. New York: Springer-Verlag. LNCS 7556 

 
Appendix  
A.1 In the following, we prove that it is always possible to choose 𝜎𝛽 such that 

(𝐴. 1.1)�𝑋∗ + 𝜎0𝜉𝛾𝑥1�𝛽̂∗ + 𝜎𝛽𝜉𝛾𝑒 − ��𝑋∗ − 𝜎0𝜉𝛾𝑥1�𝛽̂∗ − 𝜎𝛽𝜉𝛾𝑒� ≥2𝜎0𝜉𝛾𝑦1 . 

Obviously, (𝐴. 1.1) is equal to 

2𝜉𝛾�𝜎0𝑥1𝛽̂∗ + 𝜎𝛽𝑒� ≥2𝜎0𝜉𝛾𝑦1 and hence to 𝜎0𝑥1𝛽̂∗ + 𝜎𝛽𝑒 ≥ 𝜎0𝑦1. After subtracting 
𝜎0

𝑌
𝑋
𝑥1 from both sides of this inequality we see that it is equal to 𝜎0𝑥1 �𝛽̂∗ −

𝑌
𝑋
� +

𝜎𝛽𝑒 ≥ 𝜎0 �𝑦1 −
𝑌
𝑋
𝑥1�. Because of (3.1), the distance between true and perturbed 

ratio, 𝛽̂∗ − 𝑌
𝑋
 , is at most 𝜎𝛽𝜉𝛾

𝑒
𝑋

 . Hence, that the left hand side of the inequality is at 

least 𝜎𝛽𝑒 �1 − 𝜉𝛾
𝜎0𝑥1
𝑋
� . This means that it suffices to prove 𝜎𝛽𝑒 �1 − 𝜉𝛾

𝜎0𝑥1
𝑋
� ≥

𝜎0 �𝑦1 −
𝑌
𝑋
𝑥1�. By its definition (see sec. 3) 𝑒 ≥ 𝑦1 −

𝑌
𝑋
𝑥1. So it is enough to prove 

𝜎𝛽𝑒 �1 − 𝜉𝛾
𝜎0𝑥1
𝑋
� ≥ 𝜎0𝑒. Obviously, this will hold, if 𝜎𝛽 ≥

𝜎0
�1−𝜉𝛾

𝜎0𝑥1
𝑋 �

 . As  𝑥1
𝑋
≤ 1 it 

is enough to require 𝜎𝛽 ≥
𝜎0

�1−𝜉𝛾𝜎0�
 . 

 

A.2 In this section, we work out how to choose 𝜎𝛽 such that  

(𝐴. 2.1)   �𝑌∗ + 𝜎0𝜉𝛾𝑦1�𝛽̂∗ + 𝜎𝛽𝜉𝛾
𝑌
𝑋
𝑒 − ��𝑌∗ − 𝜎0𝜉𝛾𝑦1�𝛽̂∗ − 𝜎𝛽𝜉𝛾

𝑌
𝑋
𝑒� ≥

2𝜎0𝜉𝛾𝑥1 �𝛽̂∗ + 𝜎𝛽𝜉𝛾
𝑒
𝑋
� �𝛽̂∗ − 𝜎𝛽𝜉𝛾

𝑒
𝑋
�. 

Recall the definition of 𝛽̂∗ from sec. 3, e.g. 𝛽̂∗ = 𝑌
𝑋
− 𝑢 𝑒

𝑋
 . We substitute −𝑢 =

𝑟𝜎𝛽𝜉𝛾 , requiring 0 ≤ 𝑟 ≤ 1.  Then straightforward arithmetic (left to the reader) 

http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/47_Giessing.pdf
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/47_Giessing.pdf
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shows that �𝛽̂∗ + 𝜎𝛽𝜉𝛾
𝑒
𝑋
� �𝛽̂∗ − 𝜎𝛽𝜉𝛾

𝑒
𝑋
� can be written as 𝑌

𝑋
�𝑌
𝑋

+ 𝜎𝛽𝜉𝛾
𝑒
𝑋

[2𝑟 − 𝜀1]� 
where 𝜀1 =: 𝜎𝛽𝜉𝛾

𝑒
𝑌

(1 − 𝑟2), 0 ≤ 𝜀1 ≤ 𝜎𝛽𝜉𝛾
𝑒
𝑌
.  

(A.2.1) can then be written as 

(A.2.2) 2𝜉𝛾(𝜎0𝑦1𝛽̂∗ + 𝜎𝛽
𝑌
𝑋
𝑒� ≥ 2𝜎0𝜉𝛾𝑥1

𝑌
𝑋
�𝑌
𝑋

+ 𝜎𝛽𝜉𝛾
𝑒
𝑋

[2𝑟 − 𝜀1]� . After dividing 

this inequality by (-2𝜉𝛾) and addition of 𝜎0
𝑌
𝑋
𝑦1 to both sides, we see that it is equal 

to 

𝜎0𝑦1 �
𝑌
𝑋
− 𝛽̂∗� − 𝜎𝛽

𝑌
𝑋
𝑒 ≤ 𝜎0

𝑌
𝑋
𝑦1 − 𝜎0𝑥1

𝑌
𝑋
�𝑌
𝑋

+ 𝜎𝛽𝜉𝛾
𝑒
𝑋

[2𝑟 − 𝜀1]� which is 
equivalent to 

(A.2.3)  𝜎0𝑦1 �
𝑌
𝑋
− 𝛽̂∗� − 𝜎𝛽

𝑌
𝑋
𝑒 ≤ 𝜎0

𝑌
𝑋
�𝑒
𝑒
�𝑦1 − 𝑥1

𝑌
𝑋
�−𝑒𝜎𝛽𝜉𝛾

𝑥1
𝑋

[2𝑟 − 𝜀1]�. 

Like above, we substitute −𝑢 = 𝑟𝜎𝛽𝜉𝛾 in the definition of 𝛽̂∗ = 𝑌
𝑋
− 𝑢 𝑒

𝑋
 . Then the 

difference between true and perturbed ratio, 𝑌
𝑋
− 𝛽̂∗ , is −𝑟𝜎𝛽𝜉𝛾

𝑒
𝑋

= −𝑟𝜎𝛽𝜉𝛾
𝑒
𝑌
𝑌
𝑋
 and 

hence we find for the left hand side of the inequality: 𝜎0𝑦1 �
𝑌
𝑋
− 𝛽̂∗� − 𝜎𝛽

𝑌
𝑋
𝑒 =

𝜎0𝑦1 �−𝑟𝜎𝛽𝜉𝛾
𝑒
𝑌
𝑌
𝑋
� − 𝜎𝛽

𝑌
𝑋
𝑒 = −𝜎𝛽

𝑌
𝑋
𝑒 �𝑟𝜉𝛾

𝜎0𝑦1
𝑌

+ 1�. The term in brackets can be 
written as 1 + 𝜀2, where −1 ≪ 𝜀2 ≪ 1, because usually parameters are chosen such 
that 𝜎0𝜉𝛾 ≪ 1 and of course 𝑦1

𝑌
≤ 1. 

Dividing now both sides of (A.2.3) by -𝑒 𝑌
𝑋

 we see that it is equivalent to 

𝜎𝛽(1 + 𝜀2) ≥ 𝜎0 �𝜎𝛽𝜉𝛾
𝑥1
𝑋

[2𝑟 − 𝜀1] −
�𝑦1−𝑥1

𝑌
𝑋�

𝑒
� which is the same as 

(A.2.4)  𝜎𝛽 ≥
𝜎0

(1+𝜀2) �𝜎𝛽𝜉𝛾
𝑥1
𝑋

[2𝑟 − 𝜀1] −
�𝑦1−𝑥1

𝑌
𝑋�

𝑒
�  

Because of the definition of e (in sec. 3) |
�𝑦1−𝑥1

𝑌
𝑋�

𝑒
| ≤ 1. On the other hand, common 

choices of parameters yield 𝜎𝛽𝜉𝛾 ≪ 1. As 𝑥1
𝑋
≤ 1, the absolute of the left side of the 

difference in the brackets will be considerably smaller than its right side. Thus, 
obviously, (A.2.4) imposes the most critical requirement on 𝜎𝛽, if 𝑦1 − 𝑥1

𝑌
𝑋

 is 
negative and r is positive. An initial choice might be 𝜎𝛽 =: 𝜎0

1−2𝜉𝛾𝜎0
. It should then be 

confirmed, if this choice fits the data, e.g. if (A.2.4) holds “generally”. Otherwise, 
slightly increase 𝜎𝛽 until (A.2.4) is satisfied for all cells (of a sufficiently large test 
data set). 
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