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Abstract. Minimum distance controlled tabular adjustment (CTA) is a recent method-
ology for the protection of tabular data. Given a table to be protected, the purpose of
CTA is to find the closest table that guarantees the confidentiality of the sensitive cells.
This is achieved by adding slight adjustments to the remaining cells, or a subset of them
provided by the user, while the others (usually, the total cells) preserve their original
values. This more restrictive variant is commonly denoted as RCTA. CTA (or RCTA)
requires the solution of an optimization problem, but unlike other approaches, its dimen-
sion and complexity makes it tractable for state-of-the-art optimization solvers. Recently,
the authors developed an implementation of CTA under a framework program funded by
Eurostat, to be used for the protection of structural business statistics, and, in the near
future, for the protection of animal production statistics. In this paper we discuss some
of the implementation details of this CTA package, and provide results in the solution of
some real-world instances.

1 Introduction

Controlled tabular adjustment (CTA) and other minimum distance related variants
were suggested in Dandekar and Cox (2002) and Castro (2006) as a replacement to
previous more complex approaches for tabular data protection. CTA can be seen as
a method for generating a safe synthetic table, which is as close as possible to the
original table. This is obtained by solving the following optimization problem: given
a non-safe table, with a set of sensitive cells to be protected, find the closest safe
table to the original one by adding the minimum amount of perturbations. Some of
the good properties of CTA are:

e It can be applied to any table or set of linked tables. Even for complex and
large tables a solution can be obtained in reasonable time.

!This work has been supported by grant MTM2006-05550 of the Spanish Ministry of Science
and Education, and by Eurostat framework Eurostat framework contract 22100.2006.002-226.532.



Problem constraints continuous binary
CSP/CRP 2(m+ 2n)s 2ns n
CTA m + 4s 2n s

(a)

Problem constraints continuous binary
CSP/CRP 21,000,000 8,000,000 4,000
CTA 6,500 8,000 1,000

(b)

Table 1: (a) Sizes of optimization problems associated to cell suppression (CSP),
controlled rounding (CRP) and CTA. (b) Figures for a particular table of 4000 cells,
1000 sensitive cells, and 2500 linear relations.

e From a computational point of view, the size of the resulting optimization
problem is by far lower than for other well-known protection methods, such
as the cell suppression problem (CSP) and the controlled rounding problem
(CRP). For a table of n cells, s of them being sensitive, and m table linear rela-
tions, Table 1(a) shows the dimensions of the optimization problem formulated
by CSP, CRP and CTA (number of constraints, and number of continuous and
binary variables). For example, the particular figures for a table of 4000 cells,
1000 sensitive cells, and 2500 linear relations are provided in Table 1(b), clearly
showing the different order of magnitude between the optimization problems.

e State-of-the-art solvers, such as CPLEX or XPRESS, can be applied to the so-
lution of CTA. Other approaches like CSP or CRP require specialized solution
methods, either optimal or heuristic.

e CTA is a perturbative method, like CRP. However, unlike CRP, CTA allows
the user to preserve the value of some “significant” cells (i.e., cells with totals).
Those cells are published in the protected table with the original values. For
the remaining cells, it is even possible to fix the maximum allowed perturba-
tion.

e CTA can be applied to both L; and Euclidean L, distances. Ly distances pro-
vide mixed integer quadratic problems, which are more difficult to be solved,
but reduce the largest deviations.

e CTA with L, instances does not guarantee integrality of the perturbations (i.e.,
they can be fractional values). Indeed, it is possible to obtain tables where the
perturbations are fractional (e.g., three three-dimensional tables are modeled



as a multicommodity flow problem, which is known not to provide integral
flows). However, in most tables tested with the L; distance, the solution
provided was integer without imposing integrality of perturbations (however,
we do not claim the matrices were totally unimodular, which is sufficient for
guaranteeing integrality). Even if perturbations were not integer, they would
still be valid for magnitude tables.

e CTA allows minimum changes, even no changes, to published cells. This is a
main difference with respect to CRP, which forces changes to some multiple
of the predefined base number for all the cells. The quality of the solution
provided by CTA is thus higher.

e Previous empirical testing (Castro and Giessing, 2006) showed the quality of
the solution (measured as number of cells with large significant deviations)
provided by CTA was comparable, even higher, than that obtained with CSP.
Other quality criteria (Cox et al., 2004) can also be easily added to the CTA
formulation.

CTA has been recently applied within a wider scheme for protection data of
structural business status for Eurostat (project coordinated by Statistics Nether-
lands, with the participation of Destatis and Universitat Politecnica de Catalunya)
(Giessing et al., 2009). Some of the main features of the package developed are
presented in this paper. Computational results with real data initially provided by
Eurostat, and later processed by Statistics Netherlands and Destatis, are also re-
ported. For all the instances a state-of-the-art general mixed integer linear optimiza-
tion (MILP) solver, such as CPLEX or XPRESS, was able to provide an optimal, or
quasi-optimal solution, within a reasonable time limit. Specialized, hopefully more
efficient procedures, for CTA are beyond the scope of this work. Some preliminary
work has already been started by the authors (Castro and Baena, 2008; Castro and
Gonzalez, 2009).

The structure of the paper is as follows. Section 2 sketches the CTA formulation.
Section 3 describes the package implementing CTA. Section 4 shows the computa-
tional results obtained in the solution of a set of real instances. Finally, section 5
lists some features to be developed in a newer version of the package.

2 Outline of minimum distance CTA

Any CTA instance, either with one table or a number of tables, can be represented
by the following parameters:

o A setof cells a;,7 = 1,...,n, that satisfy some linear relations Aa = b (a being
the vector of a;’s), and a vector w € R" of positive weights for the deviations
of cell values.



e A lower and upper bound for each cell i = 1,...,n, respectively l,, and u,,,
which are considered to be known by any attacker. If no previous knowledge
is assumed for cell i [, = 0 (I,, = —o0 if a > 0 is not required) and u,, = +00
can be used.

o Aset S ={iy,is,...,is} C{1,...,n} of indices of confidential cells.

e A lower and upper protection level for each confidential cell i € S, respectively
Ipl; and upl;, such that the released values satisfy either z; > a; + upl; or

CTA attempts to find the closest safe values x;,7 = 1,...,n, according to some
distance L, that makes the released table safe. This involves the solution of the
following optimization problem:

min ||z —alL
subject to  Ax =1b (1)
l <z <ug

x; <a; —Ipl; or x; > a; +upl; i€S.

Problem (1) can also be formulated in terms of deviations from the current cell
values. Defining z =2z —a,l, =1, —a , u, = u, — a, using the L; distance weighted
by w, and introducing variables 2z, 2~ € R" so that z = 27 — 2z~ and |z] = 2" 4+ 27,
the final MILP model for CTA is:

min W; 2z + 2z 9
ztz7y lz:; ( v i ) ( )
subject to A(z+ —27)=0 o)
0<z"<w,, 0<z27 <—I, (20)
y€{0,1}° (20)

upl; yi <zt <y .
li(1 —y;) <27 < —lz(1—y,) }Z €S (2¢)

Constraints (2b) impose feasibility of the published perturbed table. Constraints
(2¢) guarantee perturbations are within allowed bounds. Constraints (2d)—(2e) force
the new table is safe. When y; = 1 the constraints mean upl; < zj <u, and z; =0,
thus the protection sense is “upper”; when y; = 0 we get 2;" = 0 and Ipl; < 2, < —1,,
thus the protection sense is “lower”.

3 Implementation of the CTA package

The package is provided both as an standalone application, and as a set of routines
that can be called from the user’s application (callable library). We here only refer
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to the standalone application. A description of the several routines in the callable
library can be found in Castro et al. (2009).

The package reads instances in CSP format, already used in other methods im-
plemented in the 7-Argus package (Hundepool, 2006). Once the input data file is
created, the package can be called through:

main_CTA filename out_dir [-s s] [-g g] [-t t] [-p p] [-e e] [-b bl [-m m]
[-v v] [-c c]

The first two parameters are mandatory, the remaining ones are optional, and may
be entered in any order. Calling this main program with no parameters provides the
following usage message:

usage: main_CTA filename out_dir [-s s] [-g g] [-t t] [-p p] [-e e] [-b bl
(m m] [-v v] [-c c]
where filename: instance file in csp format
outdir: directory for output files (must exist!)

s: solver s= ’c’ (CPLEX) or ’x’ (XPRESS) (default ’x’)

f: stop at first feasible solution (y=’n’ (no) or ’y’ (yes) (default ’n’)

g: % optimality gap (default g= 5%)°)

t: initial limit time in seconds for optimization (default t= 86400)

p: preprocess sensitive cells p=’n’ (no) or ’y’ (yes) (default ’n’)

e: feasibility tolerance (e >= 1.0e-9, default e=1.0e-6)

i: integrality tolerance (1>=i>=0, default is i= -1: solver default;
i>=e in XPRESS)

b: big value to be used, at most, for bounds on deviations
(default b=Infinity; b= -1: automatically set by the code; if
problems, set a decent big value as 1.0e+8)

h: emphasis for XPRESS (h=-1,0,1,2,3, default is -1; quality O--speed 3)

m: mipemphasis for CPLEX (m=0,1,2,3,4, default is 0= balanced)

v: variable selection criteria in CPLEX (v=-1,0,1,2,3,4, default is 0)

c: check input table and solution c= ’n’ (no) or ’y’ (yes) (default ’y’)

The meaning of some of the above options is as follows:

f: If yes, the package will stop once the first feasible solution has been found, and
it will ask for more CPU time (if 0 is entered, it will definitely stop).

t: CPU time limit in seconds. The optimization will be stopped once this limit has
been reached, and the package will ask for more CPU time (if 0 is entered, it
will definitely stop).

g: Optimality gap measures the quality of the solution as a relative distance from
the current solution to a known lower bound of the optimal solution. Setting
g=0% asks for the real optimal solution, but it may be computationally very
expensive. Increasing g (e.g., from the default 5% to 50% ), the code will likely
obtain a feasible sub-optimal solution quickly.
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Figure 1: (a) Original table, with sensitive cells in boldface, and lower and upper
protection levels as subscripts and superscripts; (b) Adjusted table after CTA

e: Feasibility tolerance, i.e., the degree in constraints/bounds violations allowed by
the optimization procedure. See Subsection 3.1 for details.

i: Integrality tolerance, i.e., the amount by which the binary variables in the RCTA
model can be different from 0 or 1, and still be considered 0 or 1. See Subsection
3.1 for details about this parameter.

(1))

c: If this parameter is “y” some simple checks about the input table and the solu-
tion obtained is performed and reported on the screen. These checks include
feasibility of linear table relations, protection of sensible cells, lower and upper
bounds of adjusted table values, and quality of internal optimization model
variables (i.e., that no both the positive and negative variables z;” and z; of
cell 7 are positive in the solution of the mathematical programming model (2)).

After solving the problem, the package returns three types of output: (1) output
on screen, with minimum information about the instance features, and checks about
the input and protected tables; (2) a file with the output of the optimization process
provided by the solver; (3) a file with the safe table obtained.

For instance, Figure 1(a) shows a small table with sensitive cells in boldface,
and lower and upper protection levels as, respectively, subscripts and superscripts.
Coding this table in a file named, e.g., example.in and running

main_CTA {path_of_instancel}/example.in {path_of_output_directory}

the safe table shown in Figure 1(b) is obtained. The output on screen for this
execution is:

CTA instance: example
Number of cells: 30
Number of sensitive cells: 4
Number of constraints: 11
Solver: XPRESS



XPRESS MIP emphasis: -1

MIP optimality gap: 0.05

MIP time limit (seconds): 86400

Stop at first feasible: n

Feasibility tolerance: le-06
Integrality tolerance: solver default
Big-M: le+120

Checking table relations for ORIGINAL values.
0 constraints not satisfied within provided tolerance.

At optimum: Objective F.: 1.3656 Lower bound: 1.3656 Optimality gap: 0%

Checking table relations for CTA values.

0 constraints not satisfied within provided tolerance.
Checking cell protections.

O unprotected sensitive cells in CTA solution.
Checking cell bounds.

0 violated cell bounds in CTA solution.

Checking cell perturbations.

0 wrong perturbations in CTA solution.

Optimal CTA table found (optimal within tolerances)
Total CPU time: 0.01

3.1 Guidelines for difficult CTA instances

As shown above, several package options allow the user to control the solution of the
mathematical programming model of CTA. Unfortunately, no set of default options
is in general valid for every CTA instance. This applies to both solvers, CPLEX and
XPRESS. If difficulties appear in the solution of some instance, the main parameters
to be adjusted are the following:

e Feasibility tolerance. This is the degree in constraints/bounds violations
allowed by the optimization procedure. In CPLEX it must be greater or equal
than 1.0e—9; in XPRESS it must be greater or equal than 0. If it is too
tight (e.g., 1.0e—9) the solver may falsely conclude the problem is infeasible.
By default 1.0e—6 is used. If the problem is reported as infeasible, and it is
believed to be feasible, then the feasibility tolerance should be increased (e.g.,
to 1.0e—5, or 5.0e—5). However, this may affect the quality of the solution:
the solver may report as optimal a solution that underprotects some cells. The
explanation is the following: constraints (2e) impose

where u,, and —[,, are the maximum cell deviations upwards and downwards,
respectively. If the cell bounds are large, u,, and —[,, may be large as well.

7



The above constraints force that, when y; = 1 (protection sense is “upper”),
the downwards deviation must satisfy z; < —[,,(1 —y;) = 0. However, in
practice, because of the feasibility tolerance, we may have y; = 1 — ¢, and thus
if —1,, = M, and M is a big-value, the constraint imposes z; < —[,,(1 —y;) =
M1 —(1—¢€) = Me > 0. Therefore, we allow a downwards deviation in
a cell that was “upper” protected, leading to an underprotection. A similar
reasoning applies for “lower” protected cells (i.e., y; = € instead of y; = 0).

Decreasing the feasibility tolerance, we reduce the above € value, but we make
the problem much harder, and the solver may report it as infeasible. A best
option, if possible, would be to avoid big-values M for cell deviations, but
this means the real cell bounds (lower and upper bounds) should be small.
If they were about 1.0e4+4 or 1.0e+5, the above underprotection issue would
not appear. However, in practice, real tables contain very big cell values, and
the above “small” bounds could not be possible. Whenever possible, the user
should try to tight them, if she/he has information about the data. Setting
an arbitrarily large upper bound is a bad practice. The package includes an
option to automatically set a maximum bound for all deviations.

e Integrality tolerance. This is the amount by which the binary variables
in the RCTA model can be different from 0 or 1, and still be considered 0
or 1. The CPLEX default is 1.0e—5; the XPRESS default is 5.0e—6. In
CPLEX it must be a value greater or equal than 0; in XPRESS it must be
greater or equal than the feasibility tolerance. This parameter is related with
the above feasibility tolerance. Indeed combining both of them we may try to
obtain feasible/optimal solutions with no underprotected cells. We discussed in
previous item how to avoid underprotections by tuning the feasibility tolerance.
The integrality tolerance provides a new possibility: if it is set to a very small
value, e.g., 1.0e—10, we are asking for binary solutions that are far from 0
or 1 at most 1.0e—10. Therefore the problem with constraints z;" < u., ¥
and z; < —I,,(1 — y;), explained above, may be avoided. Unfortunately,
there are two drawbacks of this approach. First, it may significantly increase
the solution time of the branch-and-cut procedure (very significantly, indeed).
Second, XPRESS (unlike CPLEX) requires and integrality tolerance greater or
equal than the feasibility tolerance. Then if we reduce the integrality tolerance,
we must reduce the feasibility tolerance as well, and then the algorithm may
falsely conclude the problem is infeasible.

4 Some computational results

The CTA package has been applied to several instances. In this work we only focus
on four particular real-world datasets provided by Eurostat. These instances can be
considered difficult, since they have a complex structure. They are related to struc-



Problem n s m  objective gap(%) CPU (sec)

sbs-E 1430 382 991 109130 2.9 4.3
sbs-C 4212 1135 2580 314950 2.0 57
sbs-D, 28288 7142 13360 414474 4.9 11548
sbs-Dy, 28288 7131 13360 407665 4.9 19510

Table 2: Results with XPRESS for some real data of structural business statistics
(provided by Eurostat, and processed by Statistics Netherlands and Destatis).

tural business statistics, for different NACE sector (C, D and E). The dimensions
of these instances, and the results obtained with the CTA package, are reported in
Table 2. Columns n, s and m provide the number of cells, sensitive cells and linear
relations of the table. Columns objective, gap and CPU show the final value of the
objective functions (weighted perturbations for all the cells), optimality gap, and
CPU time in seconds obtained with XPRESS. The optimality gap is defined as

best — b

= —_ . ]_
1+ |best]| 00%,

gap
best being the best current solution, and [b the best current lower bound. All the runs
were carried on a Linux Dell PowerEdge 6950 server with four AMD Opteron 8222
3.0 GHZ processors without exploitation of parallelism capabilities (since parallelism
was not exploited, a modern PC would provide faster executions than those reported
in Table 2). The required optimality gap was of 5% for all the executions. We see
that the smallest execution was solved in seconds, the medium-sized one in less
than a minute, and the two largest required few hours of CPU. One and seven
cells remained underprotected for, respectively, instances sbs-D, and sbs-Dy, due to
the effect described in Subsection 3.1. However, those underprotections were not
significant, being in most cases of one unit (in cells with values of thousands). It
is worth noting that CPLEX was not able to solve the two largest instances even
tuning some of the parameters. For XPRESS, a feasibility tolerance of 107% and a
maximum deviation of 10% were set. Other combinations lead to wrong solutions (i.e.,
too many underprotected cells). In general, tuning the parameters is not necessary,
but it could be for large complex instances.

5 Conclusions and future work

The package for CTA (RCTA) is a robust and flexible tool which relies on two state-
of-the-art optimization solvers. For most medium-sized instances, it may provide a
solution in reasonable time. The package is currently being extended with three new

features: (1) ability to work with nonadditive tables, i.e., the resulting deviations
will both protect the data and will make the published table additive; (2) a new
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CTA model which allows “negative” protection limits, to be used with correlated
sets of tables; (3) a tool for pseudo-automatic analysis of infeasible instances (i.e., a
help for the user to know why an instance is reported as infeasible).
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