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Abstract. The demand of scientists for confidential micro data from official sources
has created discussion of how to anonymize these data in such a way that they can
be given to the scientific community. We report results from a German project which
exploits various options of anonymization for producing such ”scientific-use” files. The
main concern in the project however is whether estimation of stochastic models from
these perturbed data is possible and - more importantly - leads to reliable results. In
this paper we concentrate on estimation of the probit model under the assumption that
only anonymized data are available. In particular we assume that the binary dependent
variable has undergone post-randomization (PRAM) and that the set of explanatory
variables has been perturbed by addition of noise. We employ a maximum likelihood
estimator which is consistent if only the dependent variable has been anonymized by
PRAM. The errors-in-variables structure of the regressors then is handled by the sim-
ulation extrapolation (SIMEX) estimation procedure.

1 Introduction

Empirical research in economics has for a long time suffered from the unavailabil-
ity of individual ”micro” data and has forced econometricians to use (aggregate)
time series data in order to estimate, for example, a consumption function. On the
contrary other disciplines like psychology, sociology and, last not least, biometry
have analyzed micro data already for decades. The software for microeconomet-
ric models has created growing demand for micro data in economic research, in
particular data describing firm behaviour. However, such data are not easily
available when collected by the Statistical Office because of confidentiality. On
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the other hand these data would be very useful for testing microeconomic mod-
els. This has been pointed out recently by KVI commission.1 Therefore, the
German Statistical Office initiated research on the question whether it is possi-
ble to produce scientific use files from these data which have to be anonymized
in a way that re-identification is almost impossible and, at the same time, dis-
tributional properties of the data do not change too much. Results from this
project have been published quite recently. See Ronning et al. (2005) where
most known anonymization procedures have been rated both with regard to data
protection and to informational content left after perturbation. In particular we
found (rank) swapping procedures not acceptable from user’s point of view.

Published work on anonymization of micro data and its effects on the estima-
tion of microeconometric models has concentrated on continuous variables where
a variety of procedures is available. See, for example, Ronning and Gnoss (2003)
for such procedures and the contribution by Lechner and Pohlmeier (2003) also
for the effects on estimation when anonymizing data either by microaggregation
or addition of noise. Discrete variables, however, mostly have been left aside in
this discussion. The only stochastic-based procedure to anonymize discrete vari-
ables is post-randomization (PRAM) which switches categories with prescribed
probability.

In this paper we concentrate on estimation of the probit model for which
only anonymized data are available. In particular we assume that the binary
dependent variable has undergone post-randomization (PRAM) and that the set
of explanatory variables has been perturbed by addition of noise. We employ
a maximum likelihood estimator which is consistent if only the dependent vari-
able has been anonymized by PRAM. The errors-in-variables structure of the
regressors then is handled by the simulation extrapolation (SIMEX) estimation
procedure.

In Section 2 we consider the probit model. We assume that the binary de-
pendent variable has been anonymized by PRAM whereas right-hand regressor
variables have been left in original form. Consistent estimates are available from
an adapted estimation procedure. We then turn to the situation that the continu-
ous regressors have been anonymized by noise addition (section 3). An attractive
procedure for handling such situations is the simulation extrapolation (SIMEX)
estimator which will be briefly described. Section 4 then presents some estimation
results for the probit model when both the dependent and the independent vari-
ables have been anonymized. We present results from a simulation study where

1See KVI (2001).
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the PRAM adapted probit estimator is combined with the SIMEX approach.

2 The probit model under post randomization

2.1 The probit model

Consider the following linear model:2

Y ∗ = α + β x + ε (1)

with E[ε] = 0 and V [ε] = σ2
ε . Here the ∗ indicates that the continuous

variable Y is latent or unobservable. This model asserts that the conditional
expectation of Y ∗ but not the corresponding conditional variance depends on
x. However we observe only a binary variable Y which is related to the latent
variable by the ”threshold model”:

Y =

{
0 if Y ∗ ≤ τ
1 else .

(2)

It can be shown that two of the four parameters α, β σ2
ε and τ have to be fixed in

order to attain identification of the two remaining ones. Usually we set τ = 0 and
σ2

ε = 1 assuming additionally that the error term ε is normally distributed. This
is the famous probit model. Note that only the probability of observing Y = 1
for a given x can be determined. If we alternatively assume hat the error term
follows a logistic distribution, we obtain the closely related binary logit model.

2.2 Randomized response and post randomization

Randomization of the binary variable Y can be described as follows: Let Y m

denote the ’masked’ variable obtained from post randomization. Then the tran-
sition probabilities can be defined by pjk ≡ P (Y m = j |Y = k) with
j, k ε {0, 1} and pj0 + pj1 = 1 for j = 0, 1 . If we define the two probabilities of
no change by p00 ≡ π0 and p11 ≡ π1, respectively, the probability matrix can be
written as follows:

Py =

 π0 1 − π0

1 − π1 π1


2See, for example, Ronning (1991).
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Since the two probabilities of the post randomization procedure usually are known
and there is no argument not to treat the two states symmetrically, in the fol-
lowing we will consider the special case

π0 = π1 . (3)

When the variable Y has undergone randomization, we will have a sample with
n observations ym

i where ym
i is the dichotomous variable obtained from yi by the

randomization procedure.
In the handbook on anonymization (Ronning et al 2005) we also discuss the

extension of PRAM to more than two categories. If the categories are ordered
as, for example, in the case of ordinal variables or count data, switching prob-
abilities for adjoining categories should be higher since otherwise the ordering
would be totally destroyed. Of course, PRAM could also be extended to joint
anonymization of two or more discrete variables.

2.3 Estimation of the model under PRAM

Under randomization of the dependent observed variable we have the following
data generating process:

Y m
i =

{
1 with probability Φi π + (1− Φi) (1− π)
0 with probability Φi (1− π) + (1− Φi) π

(4)

Here Φi denotes the conditional probability under the normal distribution that
the unmasked dependent variable Yi takes on the value 1 for given xi, i.e. Φi ≡
Φ(α + βxi) = P (Y ∗

i > 0 | xi) .
From (4) we obtain the following likelihood function:

L(α, β|(ym
i , xi), i = 1, . . . , n)

=
n∏

i=1

(Φi π + (1− Φi) (1− π))ym
i (Φi (1− π) + ((1− Φi) π)(1−ym

i ) . (5)

Global concavity of this function with respect to α and β may be checked by
deriving first and second (partial) derivatives of the log-likelihood function. Ron-
ning (2005) derives the Hessian matrix of partial derivatives. A simple formula
for the information matrix can be derived from which it is immediately appar-
ent that maximum likelihood estimation under randomization is consistent but
implies an efficiency loss which is greatest for values of π near 0.5. See Ronning
(2005) for detailed results.
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3 Addition of noise and the simulation extrapolation ap-
proach

3.1 Data protection by addition of noise

Consider the linear model which we write in usual way as follows: y = Xβ +
u . Let ey be a vector of errors with expectation zero and positive variance
corresponding to y and let EX be a matrix of errors corresponding to X. Addition
of noise means that we have to estimate the unknown parameter vector from the
model

y + ey = (X + EX) β + u . (6)

This is the well-known errors-in-variables model for which anonymization of right-
hand variables creates estimation problems whereas anonymization of the depen-
dent variable only increases the error variance3 which should be compared with
the case of microaggregation where (separate) anonymization of the dependent
variable creates problems. Lechner and Pohlmeier (2005) consider nonparametric
regression models where the regressors are anonymized by addition of noise. They
show that from the simulation-extrapolation method (SIMEX) reliable estimates
can be obtained. However for microeconometric models such as logit and probit
models general results regarding the effect of noise addition and the suitability
of the SIMEX method are not yet established.

Additive errors have the disadvantage that greater values of a variable are less
protected. Take as an example sales of firms. If one firm has sales of 1 million
and another sales of 100 million then addition of an error of 1 doubles sales of
the first but leaves nearly unchanged sales of the second firm. Therefore research
has been done also for the case of multiplicative errors which in this case should
have expectation one. Formally this leads to

y � ey = (X� EX) β + u

where � denotes element-wise multiplication (Hadamard product). For results
regarding estimation of this linear model see Ronning et al (2005). In the follow-
ing we consider only the additive case.

3.2 The SIMEX approach

We will only sketch the idea of this approach4 for the simple linear regression
model which is a special case of the linear model considered above with only one

3See Lechner and Pohlmeier (2003) for details.
4For details see, for example, Carroll et al (1995).
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Figure 1: SIMEX estimator – quadratic extrapolation function

regressor and a constant term. It is well known from econometrics that estimation
of the regression coefficient β by least squares leads to

plim β̂ = β
σ2

x

σ2
x + σ2

e

. (7)

if the regressor variable x can only be observed with error ex where σ2
x is the

variance of x and σ2
e is the variance of this error. This corresponds to equation

(6) with P [ey = 0] = 1. Now assume that this variance is known and that
another error λ ex with λ > 0 is added to the error affected regressor variable by
purpose. Then we obtain

plim β̂(λ) = β
σ2

x

σ2
x + (1 + λ)σ2

e

(8)

so that a consistent estimator would be obtained for λ = −1. Of course β̂(λ) can
be evaluated for any positive λ using simulation whereas results for λ < 0 have
to be guessed. Usually M simulation runs are averaged for each λ so that

β̂(λ) =
1

M

M∑
j=1

β̂j(λ)
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is the estimate actually used. Cook and Stefanski (1994) suggested an extrapo-
lation procedure which fits a curve to the various points and extrapolates it for
λ = −1. This is illustrated in figure 1 for the case of a quadratic extrapolation
function showing results for both coefficients from the simple regression model.

4 Simulation results

In this section we will estimate the two parameters α and β of the probit model de-
fined in (1) and (2) assuming that the dependent variable y has been anonymized
by PRAM and that the regressor variable x has been protected by addition of
noise. We also assume that the PRAM parameter π and the error variance σ2

x

are known.5 Simulated data will be used for estimation.6

We assume that n = 500 observations are available and that the two un-
known parameters are given by α = −2.5 and β = 0.6. The regressor variable is
generated from a normal distribution N(4.35 ; 1.752) and the error variable satis-
fies ε ∼ N(0; 1) the latter recognizing the identification constraint of the probit
model. The maximum likelihood (ML) estimator of the probit model based on
the likelihood function (4) is evaluated by a GAUSS programme written by the
first author using the subroutine MAXLIK from the GAUSS library.7

We use R = 50 iterations in our simulation study which may be considered
as too small but was chosen to keep computing time within acceptable limits. In
each iteration the ML estimator of the probit model is employed in the SIMEX
procedure: First for each λ ε {0 , 0.5 , 1.0 , 1.5 , 2.0} we computed M = 250 val-

ues of this estimator from which β̂(λ) was determined. Using the five different
estimates we then fitted a quadratic function to these five points and obtained
the final estimate of both α and β from evaluating this function at λ = −1. From
the M = 50 estimates we computed mean, standard deviation, median and both
the minimal and the maximal value which are presented in the following table.

5It is possible to extend the estimation procedure to the case that π is unknown. See Ronning
(2005).

6The same design has been used in Ronning et al (2005) where only the dependent variable
was anonymized.

7Many thanks to Sandra Lechner for providing us with a SIMEX routine!
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Table 1: Probit model - PRAM adapted ML and SIMEX procedure
π estimate stand.dev. variance minimum median maximum

1,000 α -3.581985 0.379676 0.144154 -4.417265 -3.555691 -2.880216
β 0.860513 0.090857 0.008255 0.720343 0.846306 1.061476

0.975 α -3.323051 0.368318 0.135658 -4.386024 -3.340966 -2.524121
β 0.799967 0.088630 0.007855 0.641313 0.786402 1.046858

0,950 α -3.005847 0.342184 0.117090 -3.870007 -2.980716 -2.274590
β 0.726057 0.076550 0.005860 0.560696 0.728072 0.889345

0.925 α -2.750990 0.309059 0.095518 -3.794785 -2.772832 -2.188305
β 0.660091 0.070754 0.005006 0.532053 0.660100 0.919395

0,900 α -2.498118 0.257171 0.066137 -3.073287 -2.505895 -2.013187
β 0.597422 0.051819 0.002685 0.485514 0.600677 0.704354

0.875 α -2.304071 0.200737 0.040295 -2.994306 -2.280229 -1.982457
β 0.553141 0.049268 0.002427 0.473322 0.545844 0.700764

0,850 α -2.051473 0.207291 0.042970 -2.791021 -2.043950 -1.729020
β 0.488270 0.041388 0.001713 0.422237 0.490443 0.632154

0.825 α -1.789513 0.190780 0.036397 -2.349686 -1.819519 -1.398894
β 0.431177 0.040328 0.001626 0.349578 0.434013 0.549036

0,800 α -1.543171 0.136212 0.018554 -1.882205 -1.530583 -1.272405
β 0.372731 0.029233 0.000855 0.310063 0.369021 0.451543

Remarks:
Simulation design: α = −2.5, β = 0.6, σ2

e = 0, 01, n = 500, R = 50, M = 250

Since we know from earlier simulation experiments that values of the PRAM
parameter π create computational problems if π is far away from 1.0 we confined
simulation to the interval π ε [0.8 ; 1.0]. Noise addition is done by a normally
distributed variable with σ2

e = 0.01. We plan to vary both π and σ2
e in a system-

atic manner since we found that estimation results seem to be very sensitive to
combinations of these two parameters chosen. See the simulation results.

The table shows that for π = 1.00 (no post randomization) both parameters
show a bias ”away from zero” which becomes smaller and switches its sign for
decreasing values of π. Whether this is only a effect of the special type of the
extrapolation function has to be analyzed in more detail.
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