New results on automatic editing using hard and soft edit rules

Sander Scholtus

Introduction

- Error localisation problem:
 - Find erroneous and missing values in data
- Edit rules:
 - Constraints that should be satisfied by the data
 - Hard edit: *e.g.* Profit = Turnover Costs
 - Soft edit: *e.g.* Profit / Turnover ≤ 50%
- Automatic error localisation

- Fellegi and Holt (1976):
 - Find the smallest (weighted) possible subset of variables that can be imputed so that all edits are satisfied
 - Mathematically,

```
\min \sum j \uparrow w \downarrow j \ y \downarrow j \ , \ y \downarrow j \in \{0,1\}
```

so that the variables with $y \downarrow j = 1$ can be imputed consistently

- Confidence weights $w \downarrow j$
- Many algorithms/tools available to solve this problem
- No room for soft edit rules

Example: why soft edits matter

Hard edit rules:

- Profit = Turnover Costs
- Turnover / Employees ≤ 550
- Turnover ≥ 0
- Costs ≥ 0
- Employees ≥ 0

Soft edit rules:

- Profit / Turnover ≤ 0.5
- Profit / Turnover ≥ -0.1

	Employees	Turnover	Costs	Profit
	(3)	(2)	(1)	(1)
raw data	5	100	60 000	40 000
hard edits	5	100	60 000	-59 900
all edits (e.g.)	5	100	60	40

- Incorporating soft edits:
 - Assign failure weights $\mathcal{S} \downarrow \mathcal{K}$ to soft edits
 - Alternative error localisation problem

```
 \min\{\lambda \sum j \uparrow \equiv w \downarrow j \ y \downarrow j \ + (1-\lambda) \sum k \uparrow \equiv s \downarrow k \ z \downarrow k \ \} \ , \ y \downarrow j \ , z \downarrow k  
 \in \{0,1\}
```

so that the variables with $y \downarrow j = 1$ can be imputed consistently with all edits except for the soft edits with $z \downarrow k = 1$

- Algorithm proposed by Scholtus (2011, 2013)
- Small-scale simulation study: Scholtus and Göksen (2012)


```
 \min\{\lambda \sum j \uparrow \equiv w \downarrow j \ y \downarrow j \ + (1-\lambda) \sum k \uparrow \equiv s \downarrow k \ z \downarrow k \ \} \ , \ y \downarrow j \ , z \downarrow k  \in \{0,1\}
```

- This can be rewritten as a Fellegi-Holt-type problem involving only hard edits
 - Add $z \downarrow k$ as a variable with confidence weight $(1-\lambda)s \downarrow k$
 - Initial value: $z \downarrow k = 0$
 - Rewrite each soft edit as a conditional hard edit
- Examples:

```
Profit \leq 0.5 \times \text{Turnover} \rightarrow \text{IF } (z_1 = 0) \text{ THEN (Profit } \leq 0.5 \times \text{Turnover)}
IF (X > 0) \text{ THEN } (Y > 0) \rightarrow \text{IF } (X > 0 \text{ AND } z_2 = 0) \text{ THEN } (Y > 0)
```


- Result: any software that can solve the error localisation problem of Fellegi and Holt (with conditional edits) can also solve the problem with hard and soft edits
- In particular, the problem can be solved using the R package editrules (available on CRAN)

Simulation study

- Real data from Dutch SBS 2007 on wholesale
 - Manually edited during regular production
 - One half used as test data, other half as reference data
 - Within test data: selected records with at most 10 errors
 - Two types of questionnaire: long form and short form

test data	short form	long form
number of records	126	800
number of variables	69	89
number of hard edit rules	93	111
number of soft edit rules	24	37

Simulation study

– Evaluation measures:

- Fraction of false negatives: $\alpha = FN/(TP+FN)$
- Fraction of false positives: $\beta = FP/(FP+TN)$
- Fraction of wrong decisions: $\delta = (FN + FP)/tot$
- Records with exactly the right solution: *ρ*
- Missing values excluded in α , β , δ (detection trivial)

- Here: focus on 22 'core variables'

ricic.	10003 011 22	detected:			
		error	no error	total	
true:	error	TP	FN	TP+FN	
	no error	FP	TN	FP+TN	
	total	Р	N	tot	

Simulation study: results

– Long form:

editing approach	α	β	δ	1- <i>p</i>	#errors	2404
only hard edits	0.813	0.007	0.058	0.493	497	
all edits as hard edits	0.650	0.060	0.097	0.694	2168	
soft edits A	0.750	0.012	0.058	0.479	786	
soft edits B	0.778	0.010	0.058	0.479	638	
soft edits C	0.778	0.011	0.059	0.483	660	
soft edits C, $\lambda = 0.3$	0.731	0.011	0.056	0.459	889	
soft edits, ideal subset	0.703	0.011	0.054	0.440	865	

– Short form:

editing approach	α	β	δ	1-ρ	#errors
only hard edits	0.779	0.012	0.085	0.500	125
all edits as hard edits	0.618	0.093	0.143	0.849	448
soft edits, ideal subset	0.673	0.018	0.080	0.452	187

455

Discussion

- Results of simulation study:
 - Quality of error localisation rather poor (missed errors)
 - Marginal improvement by incorporating soft edits
- Possible explanations:
 - Study considered relatively 'difficult' records
 - Large fraction of missing data
 - Suboptimal soft edit rules for automatic editing?
 - Minimisation criterion incompatible with manual editing?
- Other suggestions for improvement?

Thank you for your attention.

Normal form of edits

– Normal form of edits:

```
IF (condition on categorical variables)
THEN (linear condition on numerical variables)
```

- In practice, most edits can be (re-)written in normal form
 - Ratio edit:

$$X/Y \le c$$
 $\rightarrow X \le c \times Y$

- Conditional edit on numerical variables:

```
IF (X > 0) THEN (Y > 0) \rightarrow (X \le 0) OR (Y > 0) \rightarrow IF (aux = "a") THEN (X \le 0) IF (aux = "b") THEN (Y > 0)
```