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I. INTRODUCTION

1. The ability to quantitatively or qualitatively assess the e�ect of a data processing activity is
fundamental to statistical production. Given the abundance of information that can in principle be
mined from complex, multi-step data processing activities, having access to indicators that summarize
that information in a meaningful way useful at all levels of a data processing organisation. Indeed,
Brancato et al. [2009], show how various indicators may be used to report to di�erent actors including
survey managers, quality managers and external users. Furthermore, Pannekoek et al. [2014] show a
number of indicators that can be meaningfully applied to follow impact of process steps on business
survey data.

2. The current trend towards the use of data sources (administrative, web-based) for which the
data generation process is beyond the control of an NSI, has consequences for the ensuing statistical
production process. In particular, one may expect that production processes need to be more �exibly
(re)assembled to cope with variations in input data. Ideally, one imagines a process where standard
tools are interactively assembled into a production system while e�ects on data can be monitored in
real time. Currently, there are several (international) standardisation initiatives on their way that
are relevant to tool-building. These activities include the development of generic information models
(GSIM), data exchange formats (DDI, SDMX) and more. Besides a high degree of standardisation
in tool design, it is bene�cial to be able to �exibly de�ne and apply validation methods to data at
all stages of production. Generic analyses of validation output that can be applied to any validation
method is especially bene�cial since it allows for comparison of methods and tools.

3. In this paper we discuss the relation of data validation activities with several (upcoming)
international standards. Next, we give a precise de�nition of data validation in terms of a three-valued
function, which can be interpreted as a composition of a score function and a decision function. Based
on this de�nition we derive two generic parameters that can in principle be determined for any data
validation method (under a few assumptions). Finally, we show how these parameters for a number of
common types of validation rules can be derived.

4. The work described in this paper is still ongoing and builds upon several recent works in which
the authors have been involved. In Pannekoek et al. [2013] we have described a taxonomy of types data
editing activities (called data editing functions, see Figure 1) that abstracts away from any particular
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Figure 1. Taxonomy of data editing activities of Pannekoek et al. [2013]. In this paper
we zoom in on data veri�cation (also called data validation) functions.

chosen methodology. Data validation (or veri�cation) is one of those fundamental activities. Each
fundamental activity has similar type of output, and in this work we work further on specifying the
output of validation activities to make such activities generically analyzable. Secondly, we have recently
developed a number of data- and data processing quality indicators (reported upon in Pannekoek et al.
[2014]) which enable us to follow the state of a data set as it gets processed for data editing to a certain
extent. Finally, the immediate cause for this work is that we are looking for ways to implement more
generic validation rules as an extension of our previously released data editing software based on the
R environment for statistical computing. See de Jonge and van der Loo [2013] for a recent overview.

5. The rest of this paper is organized as follows. In the next section we shortly discuss our taxon-
omy and the activity of data validation in relation to current and upcoming international standards. In
Section III we present a generic model for validation functions and work out some practical examples
for cases of univariate, in-record and cross-record validation rules. Conclusions are given in Section
IV.

II. Relation with international standards

6. There are currently several international (upcoming) standards that aim to facilitate a modular
and �exible approach to designing and building statistical production systems. Here, we very brie�y
review their relation with the activity of data cleaning.

7. The generic statistical business process model (GSBPM) is a high-level classi�cation of activi-
ties performed at o�cial statistics institutes. The current classi�cation (version 5.0, UNECE [2013a])
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Figure 2. Speci�cation of a validation step. In this paper we are not concerned with
the speci�cation of the method. The abbreviations in brackets are (examples of) stan-
dards that relate to that part of the speci�cation.

consists of two levels where the �rst level divides activities into eight classes, starting with `specify
needs' and ending with `evaluate'. Data processing is the �fth class. This class is again subdivided into
eight types of activities of which `5.3: Review and validate' and `5.4: edit & imputation' are relevant
for the current paper. These two classes can be mapped respectively to `Veri�cation' (or validation)
and the combined classes `Selection' and `Amend values' in the taxonomy of Figure 1.

8. The generic statistical information model (GSIM) de�nes a set of information objects that
play a role in o�cial statistics production. GSIM version 1.1 [UNECE, 2013b] de�nes �ve groups of
information objects, relating to for example processes (the business group) or data (the concepts group).
Each group consists of a list of de�nitions of terms such as `data', `data point', `unit', and `population'.
It furthermore de�nes the relation between those terms. For example, a population contains a set of
units. There also exist connections between terms de�ned in di�erent groups so the groups themselves
are connected as well. Of relevance to us is the speci�cation of input and output concepts in terms of
GSIM objects, as well as method speci�cation in terms of validation rules (see Figure 2). In terms of
GSIM objects, the input and output of a validation process are simply `Data sets', where data may
either relate directly to observed values (the input) or be derived thereof (the output). The prescription
of a validation method consists of a `Process method' including (mathematical) validation `Rules'

9. The common statistical production architecture (CSPA) documents a reference business ar-
chitecture that allows activities at GSBPM level to be o�ered as a service within or across statistical
organisations. CSPA version 1.0 [UNECE, 2013c] de�nes roles and tasks in an organization and o�ers
templates for de�ning service interfaces. The work described in this paper may be of some relevance
when implementing service interfaces as templated by CSPA.

10. While the GSBPM and GSIM are conceptual standards that abstract away from any im-
plementation, technical standards can be used to describe a validation step and its in- and output in
practice. The Data Documentation Initiative [2014] (DDI) for example, prescribes an XML-based stan-
dard for storing metadata throughout the life-cycle of a dataset. It is originally aimed at practitioners
in social sciences but has gained some popularity amongst NSI's as well. The statistical data and
metadata exchange format (SDMX, [SDMX working group, 2014]) is being developed by international
governmental organisations including Eurostat, the Organisation for Economic Development and the
European Central Bank. At the moment, European NSI's use it to exchange census data, for example.
Both DDI and SDMX should in principle be capable of describing in- and output data. It is beyond
the scope of this paper to compare them but recently a comparison was made as part of the ESSnet
on SDMX2 [2013]. It is noteworthy that besides the XML-based standards prescribed by DDI and
SDMX, standards like JSON and Protocol Bu�ers are currently widely in use.
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11. The validation syntax (VALS) is a syntax de�nition that is still under development. It allows
users to de�ne validation rules for in-record, cross-record, and cross-dataset validation rules. Version
0.1309 Simon [2013] allows users to de�ne validation rules in the form of boolean expressions which
may include simple arithmetic or mathematical functions. The result of a VALS validation consists of
a boolean validation result, a discrepancy value measuring the discrepancy between the actual data
and data obeying the validation rule, and a severity measure indicating how `serious' a violation of the
rule at hand must be taken. Besides the validation rule, both the severity and discrepancy measure
may be user-de�ned.

III. A model for validation functions

12. With validation, or (veri�cation), we mean a confrontation of data with a previously de�ned
quality requirement. Depending on the type and dimensionality of data (uni- or multivariate, single- or
multirecord, structured or unstructured), the types and dimensions of input may vary wildly. Therefore,
in the following we shall assume that the data that is being validated has already undergone a certain
level of technical processing. Speci�cally, we assume that the data items are either empty or stored
conforming the intended data model: numbers are stored as numbers, text as text and for categorical
variables, each value is either empty or an existing (but possibly erroneous) category.

13. For such data, we de�ne a validation function as as follows.

v(x) =

 1 if s(x) ∈ V
0 if s(x) /∈ V
NA if s(x) cannot be determined.

(1)

Here, x is a data item, and we say x satis�es v when v(x) = 1 and x violates v when v(x) = 0. For the
moment, we leave undetermined whether x represents a single value, a record or a data set; speci�c
cases will be treated below. The function s is called a score function and V a region of the image of
s whose values are considered valid. The value NA stands for `not available' and occurs for example
when (part of) x is missing and the value of s(x) cannot be determined.

14. A validation function is thus fully speci�ed once the score function and its valid region are
de�ned. Observe furthermore that the validation function can be written as the function composition

v = iV ◦ s, (2)

where iV is the set indicator returning 1 when s(x) ∈ V , 0 when s(x) 6∈ V and NA when s(x) cannot
be computed. Based on this composition we �nd two interesting cases. First, observe that the function
s(x) corresponds to the `Compute scores' edit function of Figure 1. So leaving out the set indicator
iV from Equation (2) yields a quality indicator whose value may be interesting in its own right. See
for example Pannekoek et al. [2014]. Second, if we set s = Id, the identity function, the validation
function reduces to a logical rule, restricting x to a subset of all possible values for x.

15. The de�nition of Eq. (1) suggests two measures of mismatch between actual data and data
obeying all validation requirements. First, if we have a distance function d that quanti�es the di�erence
between two data points x and x′ then the value

I(x, v) = inf{d(x, x′) : v(x′) = 0}, (3)

is the shortest distance from x to an x′ that satis�es v (recall that the `inf' operator takes the greatest
lower bound of a set). The value of I may be interpreted as as measure of impact or in�uence of
a particular violation on statistics based on x. We shall therefore refer to I as the impact function.
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In general, �nding the actual value is not trivial since it directly depends on the (possibly complex)
de�nition of the chosen distance function d and the validation function v. In particular, one needs to
be able to invert the score function at the boundaries of the valid region. However, below we will show
that for a number of familiar validation rules it can be computed with relative ease.

16. Secondly, if we have a distance function on the image of s, the function

R(x, v) = inf{d(s(x), s′) : s′ ∈ V } (4)

measures how much the value of the score function needs to change before a x satis�es v. In many
cases, this distance will be easier to compute, for example when both s(x) and V consist of a single
number, d may be just the absolute di�erence between the two.

17. It is clear that the functions I and R are often closely related: score functions are often chosen
in a way to re�ect the impact a violation will have on a statistic. An increase in I often yields an
increase in R by design. In fact if we choose s = Id, we see that I and R are identical. Therefore,
if I is interpreted as the direct impact of a violation, then R may be interpreted as the severity of a
violation: a higher R-score means a more severe violation. By moderating the score function we may
quantitatively express the value we attach to a certain violation. The product of R and I can then be
seen as a function that prioritizes treatment: an x yielding a higher priority value gets higher (manual)
treatment priority.

18. We thus see that a validation activity may generically produce three types of output: the
boolean value of the validation function v(x), the impact function I and the severity function R,
where the latter two each require the de�nition of a distance function. The impact function requires
that distance between data points can be measured while the severity function requires that di�erence
between scores can be measured. Each output type is de�ned irrespective of particular validation
requirements. It is noteworthy that the VALS syntax mentioned above also de�nes three types of
output (a boolean, and optionally a user-de�ned discrepancy and severity). The main di�erence with
the current discussion is that here, the three values may be derived directly from a boolean validation
rule. In the next subsections we work out a number of familiar examples.

A. Univariate, in-record validation

19. These validations can be executed by comparing a (function of) single values with an allowed
set of values, irrespective of other values in the record or data set. For example, for a numeric value y
we may have a range edit stating y ≥ b, with b some chosen constant. To specify this rule in terms of
Equation (1) we need to determine the score function s and the region of valid outcomes V . Here, we
have

s(y) = y − b and V = [0,∞). (5)

The reader may check that under this de�nition we have for example v(1) = 0, v(−1) = 1 and
v(NA) = NA. Furthermore, if we choose the distance function d(y, y′) = |y − y′|, we have

I(y, v) = R(y, v) =

 0 if y − b ≥ 0
|y − b| if y < b
NA if y = NA.

(6)

Here, both I and R directly measure the amount of change in data necessary to satisfy the range edit.

20. As a more complicated example, consider a univariate outlier detection method based on a
method introduced by Hiridoglou and Berthelot [1986]. Here, one computes the value of fhb(y), given
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Figure 3. Schematic plot of fhb [Eq. (7)], the corresponding R and I functions [Eqs.
(8) and (9)], and prioritizing function R × I. Functions R and I equal zero when the
validation rule is satis�ed.

by

fhb(y) =

{
max

{
y
y∗ ,

y∗

y

}
− 1 if y > 0

NA, if y = NA ory ≤ 0.
(7)

where y∗ is a predetermined reference value. A value y is considered invalid when fhb(y) exceeds a
threshold value h. The validation rule is therefore de�ned by s = fhb and V = [0, h]. Note that the
lower bound of V is a property of ffb. Using the absolute di�erence as a distance function on the values
of fhb, R(y, v) is easily derived:

R(y, v) ≡ inf{|fhb(y)− s′| : s′ ≤ h} =

 0 if fhb(y) ∈ [0, h]
|fhb(y)− h| if fhb ≥ h
NA when fhb(y) = NA.

(8)

To compute the value for I, we need to express the range V = [0, h] in terms of values of y. This can
be done by �nding the inverse of fhb at ffh(y) = h for the cases where y ≥ y∗ and y < y∗. This then
gives y ∈ [y∗(h+ 1), (h+ 1)y∗] and we may write

I(y, v) ≡ inf
{
|y − y′| : y′ ∈ [y∗/(h+ 1), (h+ 1)y∗]

}
=


0 if y ∈ [y∗/(h+ 1), (h+ 1)y∗]
y∗/(h+ 1)− y if 0 < y < y∗/(h+ 1)
y − (h+ 1)y∗ if y > (h+ 1)y∗

NA if y ≤ 0 or y = NA.

(9)

Figure 3 gives a schematic overview of the behaviour of these functions. From the plot it is clear that
although the impact I of invalid values on either side of the range is similar. Deviations on the low
side of the allowed range are considered more severe (the severity function R falls o� as y−1 on the
range (0, y∗/(h + 1)] while on the same range I falls of as y). In the prioritizing function R × I this
e�ect is dampened somewhat again.

21. Range edits can also occur for categorical variables, for instance when a variable, say educa-
tional level during data collection permits multiple values, e.g. {low,medium, high}. However, after
selecting a certain subpopulation (say, persons teaching at a university) one may de�ne the rule

educational level = high. (10)
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Here, we have s = Id and V = {high}. To de�ne an impact and severity function we need to de�ne a
distance function on the set of categories {low,medium, high}. Here, we take δ(y, y′) which equals 1 if
y 6= y′ and zero otherwise. We simply get

I(y, v) = R(y, v) = δ (educational level, high) . (11)

B. Multivariate, in-record validation

22. Multivariate validation functions restrict the combined value domain of multiple variables.
Well-known examples are the sum rules appearing in business statistics. For example,

y1 + y2 = y3. (12)

Here, the score function s is de�ned by

s(y1, y2, y3) = y1 + y2 − y3, (13)

when each of the values for all yi are known and NA otherwise. The valid region is de�ned as V = {0}.
More generally, each linear restriction on a numeric record y can be written as the combination of a
linear score function sa,b(y) = aTy− b and a valid region V . If V = {0}, the restriction is an equality.
If V is an (open) half-line, the corresponding restriction is a (strict) inequality.

23. Using again the absolute di�erence between the computed score and the desired score as a
measure of severity we get (when aTy can be determined)

R(y,a, b) = inf{|sa,b(y)− u| : u ∈ V } =


0 if aTy − b ∈ V
|aTy − b| if aTy − b 6∈ V
NA if aTy = NA.

(14)

which is readily computed for the cases of equality or inequality rules. Furthermore, if we choose the
Euclidean distance to determine the impact function I, it is shown in van den Broek et al. [2014] that
we may write

I(y,a, b) = ‖a‖−1R(y;a, b). (15)

24. The above example can be extended to include multiple, say k linear (in)equalities. Our
validation rule is given by Ay ≤ b, which may include equalities, strict inequalities (<) and inclusive
inequalities (≤). The score function is now a vector function sA,b(y) = Ay − b and the valid region

is a set of vectors given by V = {u ∈ Rk : u ≤ 0}. Using again the Euclidean distance to obtain a
distance between records, we de�ne the impact function on a numerical record as follows.

I(y;A, b) = inf{‖y − y′‖ : Ay′ − b ≤ 0}. (16)

Using an algorithm of Pannekoek and Zhang [2011], y′ and therefore I(y;A, b) can be determined.
To compute the severity function R, we need to de�ne a distance function on Rk. If we choose the L1

distance, we get

R(y;A, b) = inf{|sA,b(y)− u| : u ≤ 0}, where |u− u′| =
∑
i

|ui − u′i|. (17)

This value can be computed by row-wise application of Equation (14).

25. Equations (16) and (17) o�er two rather natural ways to summarize the result of evaluating
multiple similar validation rules over a dataset. In fact, we may treat I(y;A, b) and R(y;A, b) as new,
single-valued validation rules by demanding for instance I(y,A; b) ≤ h. This allows one to introduce
a certain amount of slack on a set of strict linear inequality rules without modifying the rule set itself.



8

●●●●●● ●●●●●● ●●

●●●●● ●● ●● ●

●● ● ●● ●● ●●●●● ●●

● ●● ● ●●● ●●●●●● ●● ●●

● ●● ● ●●● ●●●●●● ●● ●●

● ●● ● ●●● ●●●●●● ●● ●

●● ●●● ● ●● ●● ●●●●●● ●● ●●

● ●●● ● ●●● ● ●●● ●●● ● ●●●●●● ●● ●● ●●

m
ax

 a
llo

w
ed

adjust

NN imp.

ded. imp.

errloc. FH

errloc. rules

rounding

typos

th. error

cor. rules

raw

1e−04 0.01 1 100 10000 1e+06

Figure 4. Impact function I(y;A, b) [Eq. (16)] based on the Euclidean distance be-
tween actual records and the closest records satisfying a set of 78 linear (in)equality
constraints as a function of processing step. Only non-zero distances (larger than 10−4)
are shown. The background boxplots show the distribution of the whole dataset (box-
plot height is proportional to the number of records for which a distance was determined)
while the lines indicate trajectories of a few individual records. A record is considered
valid when I(y, v) ≤ 0.01.

26. As a demonstration, in Figure 4 we show the value of the impact function I(y;A, b) of
Equation (16) for 840 numeric records on child care institutions as a function of processing step. The
data consists of some 48 variables which has to satisfy 78 (in)equality restrictions, including balance
restrictions. The values were computed with the rspa package of van der Loo [2012]. A detailed overview
of the methods applied to the dataset are given in Pannekoek et al. [2014] but brie�y, records undergo
1) user-de�ned transformation rules, 2) thousand error correction, 3) correction of typing errors, 4)
correction of rounding errors, 5) error localisation based on user-de�ned rules, 6) error localisation
based on the principle of Fellegi and Holt, 7) deductive imputation of 8) nearest neighbour imputation
and 10) minimal adjustment of imputed values. The boxplots in the background show the distribution
of nonzero distances over the dataset. Since each point in the plot corresponds to a single record, we
can plot traces of single records as they get processed. For example, the purple line on the far right
corresponds to a record where one or more thousand errors are detected and �xed, next some values
are removed by rule-based error localisation and after NN-imputation the imputed values are adjusted
to obey the restrictions. The record represented by the red line shows that subsequent steps do not
necessarily monotonously improve the quality: this records gets imputed with values that bring the
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record further from the valid region before being corrected again. The record represented by the green
line is treated fully by �rst repairing a typo, removing some values based on user-de�ned rules and
deductively imputing new values. The blue line represents a record where all correction comes from
error localisation, imputation and subsequent adjustment.

27. As another example, consider categorical data on age class and marital status. The data
model is given by

{under-aged, adult} × {married, never married,widowed, divorced}. (18)

We introduce the restriction that `an under-aged person cannot be or ever have been married'. The
score function for the corresponding validation is the identity function. The valid region is most easily
found by �rst de�ning the invalid region V :

V = {under-aged} × {married,widowed, divorced} (19)

and next compute V by taking the complement of V .

V = V = {adult} × {married, never married,widowed, divorced}
∪ {under-aged} × {never married} (20)

Although the valid region has a more complex structure both the impact function and the severity
function may be de�ned as 1 if a variable needs to be altered and 0 when a record obeys the rule. For
multiple categorical rules, one may choose as a distance the minimum number of variables to alter so
that the record can be made to obey all rules. In other words, this yields an error localisation problem
for which several algorithms have been developed (see De Waal et al. [2011]).

28. A more complicated numerical example occurs when we de�ne a conditional rule. For example,
suppose we have a business survey with two types of personnel costs y1 and y2, and the number of
sta� working y3. We de�ne the restriction that `if the total personnel cost is positive, the number of
sta� working must be positive as well'. The score function is a vector function de�ned as

s(y1, y2, y3) = (y1 + y2, y3). (21)

The corresponding valid region V is again derived by realizing �rst that the invalid region V =
(0,∞)× (−∞, 0], so

V = V = (−∞, 0]× R ∪ (0,∞)× (0,∞). (22)

Here, V is a non-convex region in R2. Since it cannot be described with a single set of inequalities,
the algorithm used to compute I(y;A, b) cannot directly be applied. However, V can clearly be split
up into two convex regions, and computing the distance to each region an then taking the minimum
allows one to apply the algorithm anyway. It is clear however, that such an operation becomes quickly
computationally expensive when multiple variables or multiple validation rules are treated.

IV. Summary and conclusions

29. In this paper we give an overview of our current research into methods that generalize the
analyses of data validation results. As a step towards implementation, we pointed out relations between
data validation activities and various international standards. Furthermore, we give a general model
for a data validation action which allows us to derive three generic parameters: a boolean value stating
whether data satis�es a certain quality requirement, an impact function that measures the e�ect on
the data under validation and a severity function that measures the di�erence between a quality
indicator value and its desired value. The latter two may be interpreted as a speci�c realisation of
the 'discrepancy' and 'severity' values that are included in the VALS language. The main di�erence
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is that where in VALS those values can be freely speci�ed, in our model, these values follow naturally
from the de�nition of a validation rule. Since these measures are de�ned regardless of the speci�c rule
at hand, the question arises whether they can be generically implemented. We surveyed a number
of often-used validation rules and determine the impact and severity function and �nd that for both
linear record-wise restrictions and categorical restrictions, these measures permit a general and known
algorithmic treatment, therefore allowing for a general implementation. It is an interesting question
whether other classes of validation rules exist where such a general treatment is possible.
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