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I. Introduction  
 
1. Traditionally, data editing has been a manual task, performed by human editors with extensive 
subject-matter knowledge. To improve the efficiency and timeliness of editing, many statistical institutes 
have attempted to automate parts of this process. This has resulted in, on the one hand, deductive 
correction methods for systematic errors (e.g., unit of measurement errors) and, on the other hand, error 
localisation algorithms for random errors (De Waal et al., 2011). In this paper, I will focus on automatic 
editing for random errors. In this step, each record of data is minimally adjusted, according to some 
optimisation criterion, so that it becomes consistent with a predefined set of constraints known as edit 
rules (or edits for short). Depending on the effectiveness of the optimisation criterion and the strength of 
the edit rules, automatic editing may be used as a partial alternative to manual editing. 
 
2. Most automatic editing methods that are currently used in official statistics are based on the 
seminal paradigm of Fellegi and Holt (1976). According to this paradigm, the error localisation problem 
is solved by finding, for each record, the smallest subset of variables that can be imputed so that the 
record becomes consistent with the edits. A slight generalisation is obtained by assigning so-called 
confidence weights to the variables and minimising the total weight of the imputed variables; variables 
with higher confidence weights are then assumed less likely to contain errors. Having obtained a solution 
to the error localisation problem, one needs to find suitable imputations for the variables that have been 
identified as erroneous. This is a separate problem, known as the consistent imputation problem [see, e.g., 
De Waal et al. (2011) and their references]. In this paper, I will focus on the error localisation problem. 
 
3. In practice, automatic editing is applied nearly always in combination with some form of 
selective editing. Hence, the most influential errors are still treated manually. Most statisticians consider 
manually edited data to be of higher quality than data that have been edited automatically. In fact, the 
outcome of manual editing is usually taken as the “gold standard” for assessing the quality of automatic 
editing. A critical evaluation of this assumption is beyond the scope of the present paper. Here I simply 
note that, by improving the ability of automatic editing methods to mimic the results of manual editing, 
their usefulness in practice may be increased. In turn, this means that the share of automatic editing may 
be increased to improve the efficiency of the data editing process (Pannekoek et al., 2013). 
 
4. Some years ago, Statistics Netherlands conducted a series of evaluation studies in which data sets 
from the Dutch Structural Business Statistics (SBS) were edited both automatically and manually. When 
the results of the two editing efforts were compared, a number of systematic differences were found. 
Many of these differences could be explained by the fact that human editors performed certain types of 
adjustments that do not fit well within the constraints of the Fellegi-Holt paradigm. For instance, editors 
sometimes interchanged the value of costs of type A with that of revenues of type A. This type of 
adjustment corresponds to one underlying error: the respondent mixed up the answers to two related 
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questions. However, under the Fellegi-Holt paradigm, this adjustment requires two independent 
imputations. In addition, the error of interchanging costs and revenues of the same type often caused an 
edit failure that could also be solved by adjusting the value of balance of type A, the relevant edit being: 

balance of type A = revenues of type A – costs of type A. 

During automatic editing, this alternative solution was usually preferred because it requires only one 
imputation. Subject-matter specialists preferred interchanging the costs and revenues, based on their 
knowledge of respondent behaviour. 
 
5. As another example, editors sometimes transferred (parts of) reported amounts between 
variables; for instance, they would transfer a part of the reported turnover from retail trade to turnover 
from wholesale when the original amounts did not match the reported stocks of retail goods and 
wholesale goods. Again, this is a complex type of adjustment involving at least two variables that 
nonetheless is considered as a single correction by the editors. 
 
6. To some extent, systematic differences between automatic and manual editing can be prevented 
by a clever choice of confidence weights. In general, however, it is difficult to predict the effects that a 
certain modification of the confidence weights will have on the results of automatic editing. Moreover, if 
the editors apply a number of different complex adjustments, it might be impossible to model all of them 
under the Fellegi-Holt paradigm using a single set of confidence weights. Another option is to try to catch 
errors for which the Fellegi-Holt paradigm is known to provide an unsatisfactory solution at an earlier 
stage in the data editing process, i.e., during deductive editing of systematic errors. Ideally, this would 
ensure that Fellegi-Holt-based editing is only applied to those errors for which it is suited. There are some 
practical limitations to this approach, however. Properly designing a large collection of automatic 
correction rules, and maintaining such a collection over time, can be a difficult task. For instance, the 
same set of rules applied to the same record may produce a different outcome depending on the way the 
rules are ordered. Moreover, it is not self-evident that appropriate correction rules can be found for all 
errors that do not fit within the Fellegi-Holt paradigm. 
 
7. In this paper, a different approach is suggested. A new definition of the error localisation problem 
is proposed that allows the possibility that errors affect more than one variable at a time. It is shown that 
this new problem contains error localisation under the original Fellegi-Holt paradigm as a special case. 
Informally speaking, under the new paradigm errors are located by minimising the number of so-called 
edit operations. Imputing a new value for one variable at a time is an example of an edit operation. 
However, more general edit operations can also be allowed that involve changes to multiple variables. 
For now, I restrict attention to numerical data and linear edits. 
 
8. The remainder of this paper is organised as follows. In Section II, the concept of an edit operation 
as it will be used here is formally introduced and illustrated. The new error localisation problem is 
defined in Section III and illustrated by means of a small example in Section IV. Some features of the 
new error localisation problem are discussed in Section V. Finally, some conclusions and questions for 
further research follow in Section VI. 
 
 
II. Edit operations 
 
9. Let 𝒙 = �𝑥1, … , 𝑥𝑝�′ ∈ ℝ𝑝 be a record of 𝑝 numerical variables. Suppose that this record has to 
satisfy 𝑘 edit rules, in the form of the following system of linear (in)equalities: 

𝐀𝒙 + 𝒃⊙ 𝟎, (1) 

where 𝐀 is a 𝑘 × 𝑝 matrix of coefficients and 𝒃 is a 𝑘 vector of constants. Throughout this paper, 𝟎 will 
be used to represent a vector of zeros of appropriate length; similarly, ⊙ will represent a symbolic vector 
of operators from the set {≥, =}. 
 
10. I define an edit operation 𝑔 to be a linear function of ℝ𝑝 to itself, having the general form 
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𝑔(𝒙) = 𝐓𝒙 + 𝒉, (2) 

where 𝐓 denotes a known 𝑝 × 𝑝 coefficient matrix and 𝒉 denotes a 𝑝 vector. Importantly, the elements ℎ𝑖 
may be either known constants or linear functions of free parameters. The unique free parameters (if any) 
that occur in 𝒉 are denoted by 𝛼1, … ,𝛼𝑚, or by 𝛼 if there is only one. In some cases, it may be useful to 
impose one or several linear constraints on these parameters: 

𝐑𝜶+ 𝒅⊙𝟎, (3) 

with 𝜶 = (𝛼1, … ,𝛼𝑚)′, 𝐑 a known coefficient matrix, and 𝒅 a known vector of constants. 
 
11. In automatic editing based on the Fellegi-Holt paradigm, a central role is attached to the 
replacement of one original value by an arbitrary new value (imputation). This is in fact a particular edit 
operation of the form (2) which I will call an FH operation. To find the FH operation that imputes the 
variable 𝑥𝑗, one takes 𝐓 to be a diagonal matrix with 𝑡𝑗𝑗 = 0 and all other diagonal elements equal to one; 
in addition, all elements of 𝒉 except ℎ𝑗 are zero, while ℎ𝑗 = 𝛼, with 𝛼 an unrestricted parameter. The 
resulting FH operation yields: 

𝑔 ��𝑥1, … , 𝑥𝑗−1,𝑥𝑗, 𝑥𝑗+1, … , 𝑥𝑝�′� = �𝑥1, … , 𝑥𝑗−1,𝛼, 𝑥𝑗+1, … , 𝑥𝑝�′, (4) 

with 𝛼 ∈ ℝ representing the imputed value. It should be noted that for a record of 𝑝 variables, 𝑝 distinct 
FH operations of the form (4) can be defined. No restrictions of the form (3) are imposed directly on 𝛼; 
however, in the context of the error localisation problem, an FH operation is of interest only if there 
exists a value for 𝛼 that can help to make the record consistent with the edits (1). 
 
12. To illustrate the concept of an edit operation, some further examples will now be given. For 
notational convenience, I restrict attention to the case 𝑝 = 3. 

(a) An edit operation that changes the sign of one of the variables: 

𝑔��
𝑥1
𝑥2
𝑥3
�� = �

−1 0 0
0 1 0
0 0 1

� ∙ �
𝑥1
𝑥2
𝑥3
� + �

0
0
0
� = �

−𝑥1
𝑥2
𝑥3
�. 

(b) An edit operation that interchanges the values of two adjacent items: 

𝑔��
𝑥1
𝑥2
𝑥3
�� = �

0 1 0
1 0 0
0 0 1

� ∙ �
𝑥1
𝑥2
𝑥3
� + �

0
0
0
� = �

𝑥2
𝑥1
𝑥3
�. 

(c) An edit operation that transfers an amount between two items, where the amount transferred may 
equal at most 𝐾 units in either direction: 

𝑔��
𝑥1
𝑥2
𝑥3
�� = �

1 0 0
0 1 0
0 0 1

� ∙ �
𝑥1
𝑥2
𝑥3
� + �

𝛼
0

−𝛼
� = �

𝑥1 + 𝛼
𝑥2

𝑥3 − 𝛼
�, 

with the constraint that −𝐾 ≤ 𝛼 ≤ 𝐾. 
(d) An edit operation that computes the value of a total from the values of its parts: 

𝑔��
𝑥1
𝑥2
𝑥3
�� = �

1 0 0
0 1 0
1 1 0

� ∙ �
𝑥1
𝑥2
𝑥3
�+ �

0
0
0
� = �

𝑥1
𝑥2

𝑥1 + 𝑥2
�. 

(e) An edit operation that imputes two variables simultaneously using a fixed ratio: 

𝑔��
𝑥1
𝑥2
𝑥3
�� = �

0 0 0
0 0 0
0 0 1

� ∙ �
𝑥1
𝑥2
𝑥3
�+ �

𝛼1
𝛼2
0
� = �

𝛼1
𝛼2
𝑥3
�, 

with the constraint that 𝜶 = (𝛼1,𝛼2)′ satisfies 10𝛼1 − 𝛼2 = 0. 
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13. These examples illustrate in particular that free parameters can be useful to avoid the need to 
construct a separate edit operation for every possible adjustment to the data. For instance, an FH 
operation does not specify the exact value that is imputed. Similarly, in the third example above, the 
exact amount that is transferred between 𝑥1 and 𝑥3 is not specified. 
 
14. Intuitively, an edit operation is supposed to “reverse the effects” of a particular type of error1 that 
may have occurred in the observed data. That is to say, if the error associated with edit operation 𝑔 
actually occurred in the observed record 𝒙, then 𝑔(𝒙) is the record that would have been observed if that 
error had not occurred. 
 
15. It should be clear that one could construct an abundance of edit operations of the form (2). In any 
particular application, only a small subset of these potential operations would have a substantively 
meaningful interpretation (in the sense that the associated types of errors are known to occur in that 
application). In what follows, I assume that a finite set of specific edit operations of the form (2) has been 
identified as relevant for a particular application. This will be called the set of allowed edit operations for 
that application. Some suggestions on how to construct this set will be given in Section VI. 
 
 
III. A generalised error localisation problem 
 
16. Consider a set of allowed edit operations for a given application of automatic editing. Informally, 
I propose to generalise the error localisation problem of Fellegi and Holt (1976) by replacing “the 
smallest subset of variables that can be imputed to make the record consistent” with “the shortest 
sequence of allowed edit operations that can be applied to make the record consistent”. To give a formal 
definition of this generalised error localisation problem, some new notation and concepts need to be 
introduced first. 
 
17. Let 𝒢 be a finite set of allowed edit operations. To each edit operation 𝑔 ∈ 𝒢, a weight 𝑤𝑔 > 0 
can be associated that expresses the costs of applying edit operation 𝑔. These weights may be seen as a 
generalisation of the confidence weights that were mentioned in Section I, by identifying the weight of 
the FH operation that imputes a new value for 𝑥𝑗 with the confidence weight of that variable. 
 
18. Consider a sequence of points 𝒙 = 𝒙0,𝒙1, … ,𝒙𝑡 = 𝒚 in ℝ𝑝. A path from 𝒙 to 𝒚 is defined as a 
sequence of distinct edit operations 𝑔1, … ,𝑔𝑡 ∈ 𝒢 such that 𝒙𝑛 = 𝑔𝑛(𝒙𝑛−1) for all 𝑛 ∈ {1, … , 𝑡}. Note 
that it is not allowed to use the same edit operation twice on the same path, not even with a different 
choice of parameter(s). A path is denoted by 𝑃 = [𝑔1, … ,𝑔𝑡]. The set of all possible paths from 𝒙 to 𝒚 is 
denoted by 𝒫(𝒙,𝒚). This set may be empty. 
 
19. The length of a path 𝑃 = [𝑔1, … ,𝑔𝑡] is defined as the sum of the weights of its constituent edit 
operations: 

ℓ(𝑃) = �𝑤𝑔𝑛

𝑡

𝑛=1

, (5) 

where, by convention, the empty path has length zero. Note that two paths have the same length if they 
consist of the same subset of edit operations 𝐺 ⊆ 𝒢, regardless of the order. Next, the distance from 𝒙 to 
𝒚 is defined as the length of the shortest path that connects 𝒙 to 𝒚. If no such path exists, then this 
distance is considered to be infinitely large: 

𝑑(𝒙,𝒚) = �min{ℓ(𝑃)|𝑃 ∈ 𝒫(𝒙,𝒚)} if 𝒫(𝒙,𝒚) ≠ ∅,
∞ otherwise.

 

1 Note that an error is defined in this paper as any type of disturbance that may occur in the observed data. This 
disturbance may be multivariate; for instance, interchanging the values of two variables can be considered an error. 
Hence, an error is not the same thing as an erroneous value; it is a more general concept. It is also important to 
distinguish between errors and edit failures. The latter can be caused by errors – and hence used to recognise that 
errors occurred in the observed data – but they are not errors as such. 
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In general, 𝑑(𝒙,𝒚) satisfies the standard axioms of a metric except that it need not be symmetric in 𝒙 and 
𝒚; it is a so-called “quasimetric” (Scholtus, 2014). Accordingly, I will refer to 𝑑(𝒙,𝒚) as “the distance 
from 𝒙 to 𝒚” rather than “the distance between 𝒙 and 𝒚”. 
 
20. Let 𝐷 be a closed, non-empty subset of ℝ𝑝. The distance from any point 𝒙 to 𝐷 is defined to be 
the distance from 𝒙 to the nearest point 𝒚 ∈ 𝐷: 

𝑑(𝒙,𝐷) = min{𝑑(𝒙,𝒚)|𝒚 ∈ 𝐷}. 

One subset of ℝ𝑝 that is of particular interest here is the set of all points that satisfy the edits (1); denote 
this set by 𝐷0. Provided that the system of edits is feasible (as it should be in practice), it holds that 
𝐷0 ≠ ∅. Moreover, 𝐷0 is closed because (1) does not contain any strict inequalities. 
 
21. I can now formulate the generalised error localisation problem. Consider a given set of consistent 
records 𝐷0 [defined by a system of linear edits (1)], a given set of allowed edit operations 𝒢, and a given 
record 𝒙. If 𝑑(𝒙,𝐷0) = ∞, then the error localisation problem for 𝒙 is infeasible. Otherwise, any record 
𝒚 ∈ 𝐷0 such that 𝑑(𝒙,𝒚) < ∞ is called a feasible solution to the error localisation problem for 𝒙. A 
feasible solution 𝒙∗ is called optimal if it holds that 

𝑑(𝒙,𝒙∗) = 𝑑(𝒙,𝐷0). (6) 

Formally, then, the generalised error localisation problem consists of finding an 𝒙∗ ∈ 𝐷0 that satisfies 
expression (6). 
 
22. It should be noted that if 𝒙∗ is an optimal solution to the error localisation problem for 𝒙, any 
other record in 𝐷0 that can be reached by the same path of edit operations is also an optimal solution. To 
solve the error localisation problem, it is sufficient to find an optimal path of edit operations. 
Constructing an associated record 𝒙∗ ∈ 𝐷0 may then be regarded as a generalisation of the consistent 
imputation problem. Moreover, in the special case that 𝒙 ∈ 𝐷0, the unique optimal solution is given by 
𝒙∗ = 𝒙: the error localisation problem is trivial for records that are already consistent with the edits. 
 
23. So far, no assumption has been made about the set of allowed edit operations 𝒢, other than that 
this set should be finite. In general, the above error localisation problem might be infeasible for some 
records 𝒙. This would happen whenever 𝒙 cannot be mapped onto 𝐷0 by any combination of distinct edit 
operations in 𝒢. To avoid this situation, 𝒢 should be sufficiently large so that 𝑑(𝒙,𝐷0) < ∞ for all 
𝒙 ∈ ℝ𝑝. It can be shown that this property holds in particular for any 𝒢 that contains all 𝑝 distinct FH 
operations. In fact, it is possible to connect any point in ℝ𝑝 to any other point in ℝ𝑝 by a path that 
concatenates the FH operations associated with the coordinates on which the two points differ. For 
simplicity, Scholtus (2014) assumes that 𝒢 contains all FH operations. In principle, though, one could 
also construct other sets of allowed edit operations for which the error localisation problem is always 
feasible. The special case that 𝒢 consists only of the 𝑝 distinct FH operations is of some interest. It is not 
difficult to see that problem (6) then reduces to the original error localisation problem of Fellegi and Holt 
(1976), albeit with confidence weights. 
 
 
IV. Example 
 
24. Consider the following system of linear edits in two numerical variables 𝑥1 and 𝑥3: 

𝑥1 + 𝑥3 = 19, 
𝑥1 ≥ 4, 

−𝑥1 ≥ −7, 
−𝑥1 + 𝑥3 ≥ 5, 
𝑥1 − 𝑥3 ≥ −10, 

𝑥3 ≥ 0. 

(7) 
(8) 
(9) 

(10) 
(11) 
(12) 

Scholtus (2014) describes a more elaborate version of this example that also includes the variable 𝑥2. I 
refer to that paper for detailed derivations of results that are stated without proof here. 
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Figure 1. Illustration of error localisation results for a two-dimensional example. 

 
25. It can be shown that a record is consistent with the edits (7)–(12) if, and only if, it has the 
following form: (𝑥1,𝑥3) = (7 − 𝛽, 12 + 𝛽), with 0 ≤ 𝛽 ≤ 5/2. Figure 1 illustrates this graphically. The 
boundary of the region defined by each edit from (7)–(12) is plotted as a solid line in the (𝑥1,𝑥3) plane. 
The feasible region defined jointly by these edits is shown as the bold line segment 𝐴𝐵, with 𝐴 =
�4 1

2
, 14 1

2
� and 𝐵 = (7,12); note that 𝐴𝐵 contains precisely all points of the above-mentioned form. 

 
26. The record (𝑥1, 𝑥3) = (10,−3), plotted as point 𝐶 in Figure 1, requires editing as it fails some of 
the edits in (7)–(12). Suppose that the following edit operations of the form (2) are available: 
 
name description weight 
𝑔1  FH operation for variable 𝑥1 𝑤𝑔1 = 1  
𝑔2  FH operation for variable 𝑥3 𝑤𝑔2 = 3  
𝑔3  change the sign of variable 𝑥1 𝑤𝑔3 = 0.5  
𝑔4  transfer an amount of at most 𝐾 = 15 units between 𝑥1 and 𝑥3 (in either direction) 𝑤𝑔4 = 1  

 
Formal expressions for these edit operations can be derived from the examples in Section II. A choice of 
weights for these operations is given in the last column of the table. 
 
27. Under the paradigm of Fellegi and Holt (1976), the only edit operations that are allowed are 𝑔1 
and 𝑔2. For the record (𝑥1,𝑥3) = (10,−3), both of these edit operations are needed to obtain a feasible 
solution to the error localisation problem; i.e., both variables have to be imputed. Any point 𝐸 on the line 
segment 𝐴𝐵 (in fact, any point in ℝ2) can be obtained in this way, by varying the imputed values. One 
potential path, shown in Figure 1, consists of the line segment 𝐶𝐷 (i.e., an imputation for 𝑥3) followed by 
𝐷𝐸 (i.e., an imputation for 𝑥1). The path length associated with this solution is: 𝑤𝑔1 + 𝑤𝑔2 = 4. 
 
28. Now suppose that all four of the above edit operations are allowed. It can be shown that the error 
localisation problem of Section III has two more feasible solutions in addition to the previous one. The 
first solution uses the edit operations 𝑔2 and 𝑔4 to impute 𝑥3 and transfer an amount between the two 
variables. It can be shown that, again, any point on 𝐴𝐵 can be reached from 𝐶 using these operations. A 
possible path is shown in Figure 1 as 𝐶𝐹 (i.e., a transferred amount from 𝑥1 to 𝑥3) followed by 𝐹𝐸 (an 
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imputation for 𝑥3). The associated path length is: 𝑤𝑔2 + 𝑤𝑔4 = 4. The second, optimal solution in this 
example is given by the edit operations 𝑔1 and 𝑔4. The associated path length is: 𝑤𝑔1 + 𝑤𝑔4 = 2. This 
solution is more restrictive than the previous two: the only point on 𝐴𝐵 that can be reached from 𝐶 by 
applying these operations is the point 𝐵. The corresponding path is displayed in Figure 1 as 𝐶𝐺 (a 
transferred amount from 𝑥1 to 𝑥3; note that the maximal allowed amount 𝐾 = 15 is used here) followed 
by 𝐺𝐵 (an imputation for 𝑥1). In terms of distances, it holds that 𝑑(𝐶,𝐵) = 2 and 𝑑(𝐶,𝐸) = 4 for all 
points 𝐸 ≠ 𝐵 on 𝐴𝐵. Apparently, for the weights chosen above, it is considered better to adjust 𝐶 towards 
𝐵 than towards any other point on 𝐴𝐵 in this example. 
 
 
V. Some interesting features of the new error localisation problem 
 
A. Implied edits under linear edit operations 
 
29. Scholtus (2014) outlines an algorithm that could be used to solve the error localisation problem 
of Section III. Here, I will focus on one element of this algorithm: a method to determine whether a given 
path of edit operations can yield a record that is consistent with the edits. 
 
30. In the special case of error localisation under the Fellegi-Holt paradigm, a similar question arises: 
whether a given combination of variables can be imputed to obtain a consistent record. To answer this 
question, many existing error localisation algorithms use a technique called Fourier-Motzkin elimination 
(FM elimination). FM elimination transforms a system of linear constraints having 𝑝 variables into a 
system of implied linear constraints having at most 𝑝 − 1 variables; thus, at least one of the original 
variables is eliminated from the constraints. For mathematical details, see, e.g., De Waal et al. (2011) or 
Williams (1986). 
 
31. FM elimination has the following fundamental property: the system of implied constraints is 
satisfied by the values of the non-eliminated variables if, and only if, there exists a value for the 
eliminated variable that, together with the other values, satisfies the original system of constraints. By 
repeatedly applying this fundamental property, it is possible to verify whether any particular combination 
of variables can be imputed to obtain a consistent record, given the original values of the other variables 
(De Waal et al., 2011). A clear illustration of the use of FM elimination for error localisation under the 
Fellegi-Holt paradigm is provided by the error localisation algorithm of De Waal and Quere (2003). 
 
32. Turning to the generalised error localisation problem of Section III, I first consider an edit 
operation 𝑔 of the form (2) that does not contain any free parameters. Let 𝒙 be any record and let 𝒚 be the 
record that is obtained by applying 𝑔 to 𝒙; that is, 𝒚 = 𝑔(𝒙) = 𝐓𝒙 + 𝒉. By definition, 𝒚 satisfies the edits 
(1) if, and only if, 𝐀(𝐓𝒙 + 𝒉) + 𝒃⊙ 𝟎, which is equivalent to 

(𝐀𝐓)𝒙 + (𝐀𝒉 + 𝒃) ⊙𝟎. (13) 

Expression (13) may be interpreted as follows: the record 𝒚 = 𝑔(𝒙) is consistent with the original edits 
(1) if, and only if, the record 𝒙 satisfies a similar system of linear edits, with 𝐀𝐓 as coefficient matrix and 
𝐀𝒉 + 𝒃 as vector of constants. That is to say, applying the edit operation 𝑔 to 𝒙 yields a consistent record 
if, and only if, 𝒙 satisfies (13). 
 
33. As an example, consider the following edits for (𝑥1,𝑥2): 

𝑥1 ≥ 0, 
𝑥2 ≥ 0, 

𝑥1 + 𝑥2 ≤ 5. 

(14) 
(15) 
(16) 

Let 𝑔 be the edit operation that changes the sign of 𝑥1: 𝑔�(𝑥1,𝑥2)′� = (−𝑥1,𝑥2)′. Under this edit 
operation, the above edits are transformed into the following system: 

−𝑥1 ≥ 0, 
𝑥2 ≥ 0, 

−𝑥1 + 𝑥2 ≤ 5. 

(17) 
(18) 
(19) 
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The example record (𝑥1,𝑥2)′ = (−2,3)′ is inconsistent with the original edit rules (14)–(16). On the 
other hand, it does satisfy the transformed edit rules (17)–(19). This implies that the record can be made 
consistent with the original edits by changing the sign of 𝑥1. It is easily verified that the resulting record 
(𝑥1,𝑥2)′ = (2,3)′ indeed satisfies (14)–(16). 
 
34. Next, consider the case that 𝑔 involves at least one free parameter 𝜶. One still obtains (13) but 
now as a system of constraints on the original record 𝒙 and the parameters in 𝜶. By the same reasoning as 
above, a consistent record can be obtained by applying 𝑔 to 𝒙 with a certain choice of 𝜶 if, and only if, 𝒙 
and 𝜶 satisfy (13) and (if relevant) the additional restrictions (3). Interestingly, (13) and (3) constitute a 
system of linear restrictions of the form (1) for the extended record (𝒙′,𝜶′)′. Therefore, FM elimination 
may be used to remove all free parameters from (13) and (3). This yields a system of implied linear 
restrictions for 𝒙. Moreover, the fundamental property of FM elimination states that 𝒙 satisfies this 
system of implied edits if, and only if, there exist parameter values for 𝜶 that, together with 𝒙, satisfy 
(13) and (3). Hence, it follows that applying the edit operation 𝑔 to 𝒙 can lead to a consistent record (for 
some choice of parameter values) if, and only if, 𝒙 satisfies the system of implied edits obtained by 
eliminating 𝜶 from (13) [and, if relevant, (3)]. 
 
35. The extension of this result to paths of more than one edit operation is straightforward; see 
Scholtus (2014) for more details. It should be noted that, for the special case that 𝑔 is an FH operation, 
the above result is consistent with the traditional use of FM elimination. In fact, for the FH operation that 
imputes the variable 𝑥𝑗, the transformed system of edits (13) is obtained by replacing every occurrence of 
𝑥𝑗 in the original edits by an unrestricted parameter 𝛼. Eliminating 𝛼 from (13) is therefore equivalent to 
eliminating 𝑥𝑗 directly from the original edits. In this sense, the above result generalises the fundamental 
property of FM elimination to all edit operations of the form (2). 
 
36. One aspect in which error localisation with general edit operations of the form (2) differs from 
Fellegi-Holt based editing is that the order in which edit operations are applied may be important. In fact, 
when only FH operations are used, the order in which variables are imputed does not matter. With 
general edit operations of the form (2), it can happen that, for instance, the path 𝑃 = [𝑔1,𝑔2] yields a 
consistent record while the path 𝑃′ = [𝑔2,𝑔1] does not. Scholtus (2014) describes an automated 
procedure to test whether this order effect occurs. For the paths of edit operations that were used in the 
example of Section IV, it can be shown that the order does not matter. 
 
B. A statistical interpretation of the error localisation problem 
 
37. In motivating their paradigm for automatic error localisation, Fellegi and Holt (1976) did not 
provide any formal statistical argument. Their reasoning was more intuitive: 

“The data in each record should be made to satisfy all edits by changing the 
fewest possible items of data (fields). This we believe to be in agreement with 
the idea of keeping the maximum amount of original data unchanged, subject to 
the constraints of the edits, and so manufacturing as little data as possible. At 
the same time, if errors are comparatively rare, it seems more likely that we will 
identify the truly erroneous fields.” (Fellegi and Holt, 1976, p. 18) 

In fact, error localisation under the Fellegi-Holt paradigm is often regarded as a “mechanical” approach 
without a clear statistical interpretation. Alternative error localisation procedures of a more statistical 
nature have been proposed by, e.g., Little and Smith (1987) and Ghosh-Dastidar and Schafer (2006). 
These procedures use outlier detection techniques and are based on an explicit model for the true data. 
Unfortunately, they cannot handle edit rules such as (1) in a straightforward manner, which makes them 
unsuitable for most applications in official statistics. 
 
38. Scholtus (2014) argues that, under certain conditions, the optimal solution to the generalised error 
localisation problem of Section III may be interpreted as an approximate maximum likelihood estimator. 
The derivation of this result is based on Kruskal (1983, pp. 38–39), who gave a similar argument to 
justify the use of the so-called Levenshtein distance in string comparisons. 
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39. Heuristically, the argument proceeds as follows; see Scholtus (2014) for more details. Suppose 
that errors occur stochastically and independently of each other, and that each edit operation in 𝒢 acts as a 
“corrector” for exactly one potential error. Moreover, suppose that 𝑤𝑔 = − log𝑝𝑔, with 𝑝𝑔 the 
probability that the error associated with edit operation 𝑔 occurs. Assuming that errors are rare (𝑝𝑔 ≪ 1), 
the probability of observing the record 𝒙 given the associated error-free record 𝒚 is approximately 

Pr(𝒙|𝒚) ≈ � exp{−ℓ(𝑃)}
𝑃∈𝒫(𝒙,𝒚)

, 

with ℓ(𝑃) given by expression (5). The largest contribution to this sum comes from the shortest path of 
edit operations connecting 𝒙 to 𝒚, say 𝑃∗, with ℓ(𝑃∗) = 𝑑(𝒙,𝒚). If it may be assumed that the above sum 
is dominated by its largest term, it holds approximately that 

Pr(𝒙|𝒚) ≈ exp{−𝑑(𝒙,𝒚)}. 

Let log𝐿(𝒚|𝒙) denote the loglikelihood function of 𝒚, given the observed record 𝒙. Assuming that the 
edits are hard edits, it holds that log 𝐿(𝒚|𝒙) = log 0 = −∞ for all 𝒚 ∉ 𝐷0. For 𝒚 ∈ 𝐷0, one obtains that 
log𝐿(𝒚|𝒙) = log Pr(𝒙|𝒚) ≈ −𝑑(𝒙,𝒚). This shows that minimising 𝑑(𝒙,𝒚) over all 𝒚 ∈ 𝐷0 is 
approximately equivalent to maximising the loglikelihood of 𝒚 given 𝒙. In this sense, the optimal solution 
to error localisation problem (6) can be justified as an approximate maximum likelihood estimator. 
 
 
VI. Discussion and conclusion 
 
40. In this paper, a new formulation was proposed of the error localisation problem in automatic 
editing. It was suggested to find the (weighted) minimal number of edit operations needed to make an 
observed record consistent with the edits. The new error localisation problem can be seen as a 
generalisation of the problem proposed by Fellegi and Holt (1976), because the operation that imputes a 
new value for one variable at a time is an important special case of an edit operation. The discussion in 
this paper was restricted to numerical data and linear edits. The original Fellegi-Holt paradigm has been 
applied also to categorical and mixed data (cf. De Waal et al., 2011); in principle, it should be possible to 
extend the approach of this paper to that context, using appropriately defined edit operations, but this 
remains to be investigated. 
 
41. Scholtus (2014) describes some theoretical aspects of the new error localisation problem and 
outlines a possible error localisation algorithm. As discussed in Section V.A, the same elimination 
technique that is often used to solve the Fellegi-Holt based error localisation problem can be applied also 
in the context of the new problem. Nevertheless, the task of solving the new error localisation problem is 
challenging from a computational point of view, at least for the numbers of variables, edits, and edit 
operations that would be encountered in practical applications. 
 
42. An obvious candidate for applying the new error localisation method in practice would be the 
SBS. As mentioned in the introduction, the automatic editing process that is currently used in the Dutch 
SBS is known to produce data that deviate in some respects from data that are edited manually. The 
method described in this paper has the potential to reduce these systematic differences between automatic 
and manual editing, by improving the flexibility of automatic editing in terms of the types of amendments 
that can be made to the data. A reduction of the differences between automatic and manual editing would 
mean in turn that the efficiency of the editing process could be improved by increasing the fraction of 
data that is edited automatically. 
 
43. However, more research is needed before the method described in this paper can be applied in 
practice. To apply the method in a particular context, it is necessary first to specify the relevant edit 
operations. Ideally, each edit operation should correspond to a combination of amendments to the data 
that human editors consider to be a correction for one particular error. In addition, a suitable set of 
weights 𝑤𝑔 has to be determined for these edit operations. This would require information about the 
relative frequencies of the most common types of amendments made during manual editing. Both aspects 
could be investigated based on historical data before and after manual editing (including paradata logged 
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during regular production), editing instructions and other documentation used by the editors, and 
interviews with editors and/or supervisors of editing. 
 
44. On a more fundamental level, a question of demarcation arises between deductive correction 
methods and automatic editing under the new error localisation problem. In principle, many known types 
of error could be resolved either by automatic correction rules or by error localisation using edit 
operations. Both approaches have their advantages and disadvantages (Scholtus, 2014). It is likely that 
some compromise will yield the best results, with some errors handled deductively and others by edit 
operations. However, it is not obvious how to make this division in practice. 
 
45. Ultimately, the aim of the new methodology proposed in this paper is to improve the usefulness 
of automatic editing in practice. Whether the new error localisation problem can be successful in this 
respect remains to be seen. 
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