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Introduction
• One of the more pressing problems facing statistical agencies and

economic analysts is the new goods (and services) problem; i.e.,
how should the introduction of new products and the
disappearance of (possibly) obsolete products be treated in the
context of forming a consumer price index?

• Hicks (1940) suggested a general approach to this measurement
problem in the context of the economic approach to index number
theory.

• His approach was to apply normal index number theory but
estimate hypothetical prices that would induce utility maximizing
purchasers of a related group of products to demand 0 units of
unavailable products.

• With these virtual (or reservation or imputed) prices in hand, one
can just apply normal index number theory using the augmented
price data and the observed quantity data.

• The practical problem facing statistical agencies is: how exactly are
these virtual prices to be estimated? We address this problem in this
paper.
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Introduction (cont)
• The two main contributors in this area are Feenstra (1994) 

and Hausman (1996).
• Feenstra’s method largely avoids econometric estimation but 

is likely to overstate the benefits of new products. 
• His method relies on the properties of CES utility and cost 

functions. It turns out that CES reservation prices for new 
and disappearing products are equal to plus infinity and 
hence, it is not necessary to estimate reservation prices using 
the Feenstra methodology. His method does require an 
estimate for the elasticity of substitution.

• Hausman’s method requires the estimation of consumer 
expenditure functions. His method is theoretically sound but 
there are econometric difficulties in implementing his 
methodology.

• We suggest a new methodology which avoids the problems 
with the Feenstra and Hausman methodologies. 
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The Scanner Data Set for Sales of Frozen Juice

• In order to compare Feenstra’s CES methodology with our
new methodology, we used the data from Store Number 5 in
the Dominick’s Finer Foods Chain of 100 stores in the
Greater Chicago area on 19 varieties of frozen juice for 3
years in the period 1989-1994.

• We aggregated weekly price and sales data into 39 “months”,
where each “month” consisted of 4 consecutive weeks of sales
data so we have 39x19 = 741 price and quantity observations.

• However, products 2 and 4 had no sales for months 1-8 and
product 12 was missing for month 10 and 20-22 so that there
were 20 missing prices out of the 741 price-quantity
observations.

• We estimated CES preferences as well as KBF preferences
for this data set and compared Feenstra’s methodology for
new and disappearing products with our new methodology.4



The Scanner Data Set for Sales of Frozen Juice (cont)
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Chart 1: Sales Shares of Best Selling Products 
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The Scanner Data Set for Sales of Frozen Juice (cont)
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Chart 2: Sales Shares of Least Popular Products 
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The Scanner Data Set for Sales of Frozen Juice (cont)
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Chart 3: Normalized Prices for Best Selling Products  
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The Scanner Data Set for Sales of Frozen Juice (cont)
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Chart 4: Normalized Prices for Least Popular Products 
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The Scanner Data Set for Sales of Frozen Juice (cont)
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Chart 5: Normalized Quantities for Best Selling Products 
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The Scanner Data Set for Sales of Frozen Juice (cont)
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Chart 6: Normalized Quantities for Least Popular Products 
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CES and Feenstra Price Indexes and Sato-Vartia, Fisher, 
Laspeyres, Paasche Fixed Base and Chained Maximum 

Overlap Price Indexes
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• The fixed base Paasche indexes are on the lowest curve on
Chart 7. PCES

t is slightly below the fixed base maximum
overlap (fixed base) Fisher index PF

t and they are the second
and third curve from the bottom.

• The highest curves are PFCh
t, the chained maximum overlap

Fisher index, PSV
t, the Sato-Vartia maximum overlap chained

index followed by the chained Feenstra indexes, PFEEN
t. These

indexes suffer from some chain drift. The wide gap between
the fixed base maximum overlap Laspeyres and Paasche
indexes indicates that these two indexes suffer from
substantial substitution bias.

• The most reasonable indexes are the econometrically
determined CES price index, PCES

t, and the fixed base
maximum overlap Fisher index, PF

t. (The black and gold
lines on the chart which follows).



CES and Feenstra Price Indexes and Sato-Vartia, Fisher, 
Laspeyres, Paasche Fixed Base and Chained Maximum 

Overlap Price Indexes
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Chart 7: CES, Feenstra and Maximum Overlap Price Indexes 
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The Konüs-Byushgens-Fisher Utility Function

• The functional form for a purchaser’s utility function f(q) that we will
introduce in this section is the following one:

(75) f(q) = (qTAq)1/2

• where the N by N matrix A ≡ [ank] is symmetric (so that AT = A) and thus
has N(N+1)/2 unknown ank elements.

• We also assume that A has one positive eigenvalue with a corresponding
strictly positive eigenvector and the remaining N−1 eigenvalues are
negative or zero.

• Konüs and Byushgens (1926) showed that the Fisher (1922) quantity
index QF(p0,p1,q0,q1) ≡ [p0⋅q1p1⋅q1/p0⋅q0p1⋅q0]1/2 is exactly equal to the
aggregate utility ratio f(q1)/f(q0) provided that all purchasers maximized
the utility function defined by (75) in periods 0 and 1 where p0 and p1 are
the price vectors prevailing during periods 0 and 1 and aggregate
purchases in periods 0 and 1 are equal to q0 and q1.

• The KBF functional form has 2 advantages over the translog functional
form: (i) the translog utility function is not well defined when a quantity
is 0 and (ii) it is possible to impose the correct curvature conditions on the
KBF functional form without destroying its flexibility. 13



The KBF Functional Form (cont)

• The KBF functional form also has an advantage over the 
normalized quadratic functional form, f(q) ≡ qTAq/qTα, 
which requires the econometrician to specify (or estimate) 
the α vector of parameters.

• Thus we will concentrate on alternative specifications for the 
estimation of the KBF functional form. 

• The unit cost function which is dual to the KBF utility 
function defined by (75) is: 

(1) c(p) ≡ min q{f(q) ≥ 1; q ≥ 0N}.
• The first order necessary (and sufficient) conditions that can

be used to solve the unit cost minimization problem defined
by (1) when the utility function f is defined by (75) are the
following conditions:

(76) p = λAq/(qTAq)1/2 ;
(77) 1 = (qTAq)1/2.
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The KBF Functional Form (cont)

• Multiply both sides of equation n in (76) by qn and sum the
resulting N equations.

• This leads to the equation p ⋅q = λ (qTAq)1/2. Solve this
equation for λ and use this solution to eliminate the λ in
equations (76).

• The resulting equations (where equation n is multiplied by
qn) are the following system of inverse demand share
equations:

(78) sn ≡ pnqn/p⋅q = qn Σk=1
N ankqj/qTAq ; n = 1,...,N

• where ank is the element of A that is in row n and column j for
n, k = 1,...,N.

• Equations (78) can be used as a system of nonlinear
estimating equations. In the following 3 slides, we show how
the parameters in the A matrix can be written in a different
form that allows us to impose the concavity property on f(q).15



The KBF Functional Form (cont)

• We set A equal to the following expression:
(79) A = bbT + B; b >> 0N ; B = BT ; B is negative semidefinite;

Bq* = 0N.
• The vector bT ≡ [b1,...,bN] is a row vector of positive constants

and so bbT is a rank one positive semidefinite N by N matrix.
• The symmetric matrix B has N(N+1)/2 independent elements

bnk but the N constraints Bq * reduce this number of
independent parameters by N.

• Thus there are N independent parameters in the b vector and
N(N−1)/2 independent parameters in the B matrix so that
bbT + B has the same number of independent parameters as
the A matrix.

• Diewert and Hill (2010) showed that replacing A by bbT + B
still leads to a flexible functional form.

16



The KBF Functional Form (cont)

• The reparameterization of A by bbT + B is useful in our
present context because we can use this reparameterization
to estimate the unknown parameters in stages.

• Thus we will initially set B = ON×N, a matrix of 0’s. The
resulting utility function becomes f(q) = (qTbbTq)1/2 =
(bTqbTq)1/2 = bTq, a linear utility function.

• The matrix B is required to be negative semidefinite. 
• We can follow the procedure used by Wiley, Schmidt and 

Bramble (1973) and Diewert and Wales (1987) and impose 
negative semidefiniteness on B by setting B equal to −CCT

where C is a lower triangular matrix.
• Write C as [c1,c2,...,cN] where ck is a column vector for k = 

1,...,K. 
• If C is lower triangular, then the first k−1 elements of ck are 

equal to 0 for k = 2,3,...,N. 17



The KBF Functional Form (cont)

• Thus we have the following representation for B:
(80) B = −CCT

= − Σn=1
N cncnT

• where we impose the following restrictions on the vectors cn

in order to impose the restrictions Bq* = 0N on B:
(81) cn⋅q* = cnTq* = 0 ; n = 1,....,N.
• In the first stage, we estimate the linear utility function f(q) =

bTq. In the second stage, we estimate f(q) = (qT[bbT −
c1c1T]q)1/2 where c1T ≡ [c1

1,c2
1,...,cN

1] and c1Tq* = 0.
• For starting coefficient values in the second nonlinear

regression, we use the final estimates for b from the first
nonlinear regression and set the starting c1 ≡ 0N.

• We continue adding ci columns as long as the log likelihood
for the system of estimating equations increases significantly.
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The Systems Approach to the Estimation of KBF 
Preferences

• Our system of nonlinear estimating equations for Model 5 is the
following stochastic version of equations (75) above where A = bbT

− c1c1T:
(82) si

t = qi
t Σk=1

19 aikqk
t/[Σn=1

19Σm=1
19 anmqn

tqm
t] + εi

t

t = 1,...,39; i = 1,...,19
• where bT = [b1,...,b19], c1T = [c1

1,...,c19
1] and the error term vectors,

εtT = [ε1
t,...,ε19

t] are assumed to be distributed as a multivariate 
normal random variable with mean vector 019 and variance-
covariance matrix Σ for t = 1,...,39.

• There were no problems in estimating this rank 2 A matrix model 
using the econometric estimation package Shazam.

• The equation by equation R2 values were as follows: 0.9661, 0.9787,
0.9623, 0.9889, 0.9608, 0.9521, 0.9628, 0.8002, 0.9657, 0.9752, 
0.8337, 0.9224, 0.9867, 0.8936, 0.9673, 0.9555, 0.9064 and 0.9599.

• Note that this framework can handle 0 quantity observations 
perfectly well; if a quantity is 0, the corresponding expenditure 
share is also 0. 
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The Systems Approach to the Estimation of KBF Preferences 
(cont)

• Our system of nonlinear estimating equations for Model 6 are
equations (82) where A = bbT − c1c1T − c2c2T with c2T =
[0,c2

2,...,c19
2] and the normalizations b19 = 1, c19

1 = − Σn=1
18 cn

1

and c19
2 = − Σn=2

18 cn
2.

• Thus there are 18 + 18 + 17 unknown parameters to estimate
in the A matrix.

• However, the nonlinear maximum likelihood estimation
package in Shazam did not converge for this model. The
problem is that the error specification that is used in the
system command for the Nonlinear estimation option in
Shazam also estimates the elements of the variance
covariance matrix Σ.

• Thus for our Model 6, it is necessary to estimate the 53
unknown parameters in the A matrix plus 19×18/2 = 171
unknown variances and covariances. Too hard to do! 20



The Single Equation Approach to the Estimation of KBF 
Preferences using Share Equations 

• In order to deal with the nonconvergence problem, we decided to 
stack up our 18 estimating equations into one big nonlinear 
regression model which involves estimating a single variance 
parameter instead of the 171 parameters required for the systems 
approach.

• We stopped adding columns to the lower triangular C matrix at 4 
columns, which was our Model 11.

• For this model, we have A = bbT − c1c1T − c2c2T − c3c3T − c4c4T with 
c4T = [0,0,0,c4

4,...,c19
4] and the additional normalization c19

4 = −
Σn=4

18 cn
4.

• The final log likelihood for this model was 2629.182, an increase of 
14.656 for adding 15 new parameters to the Model 10 parameters.

• Thus the increase in log likelihood is now less than one per 
additional parameter so we decided to stop adding columns at this 
point.

• The single equation R2 increased to 0.9922. 21



KBF Utility Function: the One Big Equation Approach (cont)

• However, this single equation R2 is not comparable to the 
equation by equation R2 that we obtained using the systems 
approach in the previous section. 

• The comparable R2 for each separate product share equation 
are as follows: 0.9859, 0.9930, 0.9773, 0.9853, 0.9814, 0.9543, 
0.9755, 0.8581, 0.9760, 0.9694, 0.8923, 0.9278, 0.9908, 0.9202, 
0.9874, 0.9566, 0.9111 and 0.9653. 

• The average R2 is 0.9560 which is a relatively high average
when estimating share equations.

• Once we have an estimated A matrix, it is straightforward to 
form the reservation prices for the 20 observations where we 
have missing products.

• We explain the relevant algebra on the next slide.
• Using the one big equation approach, we dropped the 

observations where the prices were missing. 22



KBF Utility Function: the One Big Equation Approach (cont)

• With the estimated b and c vectors in hand (denote them as b* and
ck* for k = 1,2,3,4), form the estimated A matrix as follows:

(76) A* ≡ b*b*T − c1*c1*T − c2*c2*T − c3*c3*T − c4*c4*T

• and denote the ij element of A* as aij
* for i,j = 1,...,19. The predicted

expenditure share for product i in month t is si
t* defined as follows:

(77) si
t* ≡ qi

t Σk=1
19 aik

*qk
t/[Σn=1

19Σm=1
19 anm

*qn
tqm

t].

• The predicted price for product i in month t is defined as follows:
(78) pi

t* ≡ et Σk=1
19 aik

*qk
t/[Σn=1

19Σm=1
19 anm

*qn
tqm

t]

• The predicted prices for products 2 and 4 for the first 8 months in
our sample period were 1.62, 1.56, 1.60, 1.52, 1.61, 1.52, 1.70. 1.97
and 1.85, 1.46, 1.80, 1.37, 1.77, 1.83, 1.88, 2.27 respectively.

• The predicted prices for product 12 for months 10 and 20-22 were
1.37, 1.20, 1.22 and 1.28. These prices are not infinite!
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KBF Utility Function: the One Big Equation Approach (cont)

• Problem: the predicted prices were not particularly close to 
the actual prices! 

• Thus the equation by equation R2 for the 19 products were as 
follows: 0.7571, 0.8209, 0.8657, 0.8969, 0.9025, 0.7578, 0.8660,
0.0019, 0.2517, 0.1222, 0.0000, 0.0013, 0.9125, 0.6724, 0.4609, 
0.7235, 0.5427, 0.8148 and 0.4226. 

• The average R2 is only 0.5681 which is not very satisfactory. 
• How can the R2 for the share equations be so high while the 

corresponding R2 for the fitted prices are so low? 
• The answer appears to be the following one: when a price is 

unusually low, the corresponding quantity is unusually high 
and vice versa. 

• Thus the errors in the fitted price equations and the 
corresponding fitted quantity equations tend to offset each 
other and so the fitted share equations are fairly close to the 
actual shares.
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KBF Utility Function: the One Big Equation Approach II

• Our interest is not in predicting shares; our interest is in finding 
predicted prices for the observations when quantities are equal to 
0.

• Thus we turned to another econometric specification of the KBF 
utility function model where prices replaced shares as the 
dependent variables in the One Big Regression Approach.

• Thus the new estimating equations become:
(79) pi

t ≡ et Σk=1
19 aik

*qk
t/[Σn=1

19Σm=1
19 anm

*qn
tqm

t] + εi
t ;

t = 1,...,39; i = 1,...,18.
• Again, the observations that correspond to missing products are

dropped from the stacked estimating equations defined by (79).
This is an advantage of the one Big Regression Approach.

• As before, A = bbT − CCT where C is a lower triangular matrix.
• With the new dependent variables, we were able to estimate a rank

6 substitution matrix (which is the matrix − CCT ).
25



KBF Utility Function: the One Big Equation Approach II (cont)

• The final log likelihood for the rank 6 substitution matrix
Model 14 was 568.877, an increase of 18.531 over the rank 5
substitution Model 13. The single equation R2 was 0.9527.

• Model 14 had 111 unknown parameters that were estimated 
(plus a variance parameter). We had only 680 observations and 
so we decided to call a halt to our estimation procedure.

• The equation by equation R2 that compares the predicted 
prices for the 19 products with the actual prices were as 
follows: 0.8274, 0.8678, 0.9001, 0.9174, 0.8955, 0.8536, 0.9047, 
0.0344, 0.3281, 0.4242, 0.0516, 0.2842, 0.8650, 0.7280, 0.4872, 
0.8135, 0.8542, 0.8479 and 0.3210. 

• The average R2 for Model 14 was 0.6424. For Model 11, it was 
0.5681 so by switching from shares as the dependent variables 
to prices as the dependent variables, we have improved the 
accuracy of our estimated predicted prices.
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KBF Utility Function: the One Big Equation Approach II (cont)

• The month t utility level or aggregate quantity level implied by
the KBF model, QKBF

t, is defined as follows:
(81) QKBF

t ≡ (qtTA*qt)1/2 ; t = 1,...,39.
• The corresponding KBF (unnormalized) implicit price level,

PKBF
t*, is defined as period t sales of the 19 products, et, divided

by the period t aggregate KBF quantity level, QKBF
t:

(82) PKBF
t* ≡ et/QKBF

t ; t = 1,...,39.
• The month t KBF price index, PKBF

t, is defined as the month t 
KBF price level divided by the month 1 KBF price level; i.e., 
PKBF

t ≡ PKBF
t*/PKBF

1* for t = 1,...,39. 
• These econometrically based KBF price indexes can be

compared to our econometrically based CES price indexes
PUCES

t that are defined in a similar manner using the results of
Model 4, which estimated a direct CES utility function.

• However, before we make this comparison, we estimate one
more model. 27



CES Utility Function; One Big Equation; Prices as Dependent 
Variables (instead of shares) 

• This leads to the following system of estimating equations:
(83) pi

t = [et/qi
t][βi (qi

t)s/∑n=1
19 βn (qn

t)s] + εi
t ; t = 1,...,39; i = 1,...,18.

• Now stack the above 702 equations into a single estimating equation 
and drop the 20 observations where qi

t = 0. Call this Model 15.
• The final log likelihood was equal to 483.834, which is below the final 

LL from the KBF Model 14 which was 568.877. 
• The single equation R2 was 0.9393, which is below the single equation 

R2 from Model 14, which was 0.9527.
• The estimated parameter s was s* = 0.85365. This is virtually 

identical to our estimate for s from Model 4 (which used the systems 
approach to CES utility function estimation with shares as 
dependent variables) which was 0.85374. (σ = 1/(1−s*) = 6.8 )

• Since the estimated s for Model 15 is the same as it was for Model 4, 
the Feenstra gains and losses from changes in product availability 
will not change.
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CES Utility Function; One Big Equation; Prices as Dependent 
Variables (cont)

• The month t utility level or aggregate quantity level implied by
the New Single equation CES Model 15, QCESN

t, is defined as
follows:

(84) QCESN
t ≡ [∑n=1

19 βn
* (qn

t)s*]1/s* ; t = 1,...,39.
• The corresponding New CES (unnormalized) implicit price level,

PCESN
t*, is defined as period t sales of the 19 products, et,

divided by the period t aggregate quantity level, QCESN
t:

(85) PCESN
t* ≡ et/QCESN

t ; t = 1,...,39.
• The month t New CES price index, PCESN

t, is defined as the 
month t CESN price level divided by the month 1 CESN price 
level; i.e., 
PCESN

t ≡ PCESN
t*/PCESN

1* for t = 1,...,39.
• The CESN price index will be compared to its econometric 

counterpart indexes PKBF
t (Model 14) and PUESN

t (Model 4).
29



Comparison of 3 Econometric Based Price Indexes with Chained 
and Fixed Base Fisher Indexes that use Reservation Prices 

• PKBF
t and PCESN

t are very close to each other. The Model 4 CES price index, 
PUESN

t , is pretty close to the Model 14 and 15 indexes. The fixed base Fisher 
index that uses reservation prices for the missing products is fairly close as 
well. The chained Fisher index that uses reservation prices has upward 
chain drift.  
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KBF and CES Gains from Changes in Product Availability: 
Table 10: Gains and Losses of Utility that can be Attributed to 

Changes In Product Availability Holding Expenditure Constant
KBF CES

GA2,4
9 1.00127 1.00746   

LA12
10 0.99748 0.99512                

GA12
11 1.00304 1.00529

LA12
20 0.99881 0.99644

GA12
23 1.00078 1.00296

Product 1.00138 1.00724
• Since there is a net gain in product availability over the sample 

period, both estimated utility functions register a net gain.
• But the net gain from the KBF utility function is only about 1/5 

of the gain that accrued to the CES utility function using 
Approach 3. The CES approach consistently overestimates the 
gains from increased product availability!
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Conclusion: The Important Points to Take Away!
• When dealing with scanner data where there are periodic sales 

of products, chain drift is a huge problem.
• Multilateral index number theory can be used to deal with the 

chain drift problem; see the ABS (2016) and Diewert and Fox 
(2017)

• It is not a trivial matter to estimate the elasticity of substitution 
in the CES context. Estimation of the CES unit cost function 
may give very different results from estimation of the CES 
direct utility function. 

• The CES methodology developed by Feenstra for measuring 
the gains from increased product availability appears to 
overestimate the gains by a substantial amount. 

• The KBF utility function can be estimated and it can be used to 
calculate “reasonable” reservation prices but it is too labour 
intensive (and subject to many econometric uncertainties) to be 
adopted by statistical agencies as a practical approach to the 
estimation of reservation prices. 
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