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Introduction

Goal

migration forecast during unstable economical condi-

tions

Statistical problem

modelling with auto-correlated and non-stationary time

series

uncertainty control
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Our solution

dynamical models =

auto-regressive distributed lag (ARDL) models, where:

the dependent variable at time t is modelled as a func-

tion of its own values at different time lags and of the

values of several simultaneous or lagged predictor vari-

ables.
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Main points

1. why do we use dynamical models

2. what are the mathematical conditions for a reliable

statistical inference and whether they are fulfilled

by our data and models

3. how are our models for all migration components

built and how do they perform
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Data

• the number of Icelandic immigrants/emigrants, men

• the number of Icelandic immigrants/emigrants, women

• the number of immigrants/emigrants, women of

foreign citizenship

• the number of foreign immigrants/emigrants, men
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Data

• the unemployment rate

• a measure of GDP

• the number of graduating students, men and women
respectively

• a dummy variable coupled to the Icelandic economic
boom

• a dummy variable which mirrors the re-sizing of the
EEA
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Data analysis

Statistical tests for all time series:

• stationarity: augumented Dickey-Fuller and Kwiatkowski-

Philips-Schmidt-Shin (KPSS)

• auto-correlation of first and higher order, by using

Durbin-Watson and Breusch-Gofrey tests
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change in number of Icelandic immigrant men
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Conditions for valid inference

• consistent model selection for the structure and the

order of the model

• independent and identically distributed residuals

• non-biased and consistent point estimates

• correct and optimal calculation of confidence/prediction

intervals
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ARDL Models

yα(t) ∼
n∑

β 6=α;i=0
yβ(t− i) +

p∑
i=1

yα(t− i)

+
m∑

k;j=0
xk(t− j)
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y1(t) ∼ y1(t− 1) + x4(t) + x4(t− 1) + y2(t− 1)

y2(t) ∼ y2(t− 1) + y2(t− 2) + x5(t− 2)

y3(t) ∼ y3(t− 1) + x4(t) + x8(t) + x4(t− 1) + x8(t− 1)

y4(t) ∼ y4(t− 1) + y4(t− 2) + x6(t− 2)

y7(t) ∼ y7(t − 1) + boom(t) + eea(t) + x4(t) + x8(t) +

x4(t− 1) + x8(t− 1)

y8(t) ∼ y8(t − 1) + y7(t) + y7(t − 1) + x4(t) + x8(t) +

x4(t− 1) + x8(t− 1)
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Interpretation

The interpretation and model diagnostics when using

ARDL is very different from the classical so-called static

models (see collinearity, short and long term effects)

One way to apply the classical notions is to transform

a dynamical model into the equivalent error correction

model (ECM):

∆yα(t) ∼
∑
β

∆yβ(t) +
∑
k

∆xk(t)

+

(
yα(t− 1) ∼

∑
β
yβ(t− 1) +

∑
k
xk(t− 1)

)
+ ...
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Behaviour of residuals and model fit

• Stationarity of residuals:

– KPSS tests do not reject the hypothesis of sta-

tionarity (all p-values ≥ 0.1)

– augumented Dickey-Fuller tests reject non-stationarity

(all p-values ≤ 0.01)

• Normality of residuals: Jacques-Bera tests do not

reject normality of model residuals - distributions.

( all p values ≥ 0.1). Histograms.
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Behaviour of residuals and model fit

• Autocorrelation of residuals:

– Box-Ljung tests do not reject the hypothesis of

random residuals

– direct calculation of autocorrelation for residuals

(see Figure A1)

• Goodness of fit: rainbow tests
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New and old predictions (with permission, from Omar Hardarson)
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Conclusions and Discussion

• Good performance of ARDL models

• Limitations: regressor forecast, registration process

• Coverage and type II errors

• Vector ARDL models: how realistic

• External factors


