Probabilistic Projection of Net International Migration Rates For All Countries

Adrian E. Raftery

University of Washington and University College Dublin http://www.stat.washington.edu/raftery

Joint work with Jonathan J. Azose Supported by NICHD and Science Foundation Ireland

Joint Eurostat/UNECE Work Session on Demographic Projections Rome, 30th October, 2013

Outline

- Population projections and international migration
- ▶ Bayesian hierarchical model for net international migration rates
- Ensuring balance
- Assessment of method
- Examples

Population Projections and International Migration

- In November 2012, UN Population Division issued experimental probabilistic population projections for all countries
 - http://esa.un.org/unpd/ppp/
 - Probabilistic fertility projections based on a Bayesian hierarchical model (BHM) for TFR (Alkema et al 2011, *Demography*)
 - Probabilistic mortality projections based on a BHM for life expectancy (Raftery et al 2013, *Demography*)
 - BUT deterministic migration projections: persistence in the medium term, then declining to zero (with some exceptions).
- Probabilistic projections of net international migration needed for all countries
 - Should give calibrated intervals, e.g. 80% prediction intervals should contain the truth 80% of the time on average.

Some Stylized Facts About International Migration

(from WPP estimates)

- It sums to zero across the globe for all sex-age groups
- Countries often cross over from sending to receiving countries:
 - ▶ 46% of countries were either sending countries in 1950–55 and receiving countries in 2005–2010, or vice versa.
- Trends:
 - Proportion of world population migrating has been increasing (proxied by sum of absolute net migration)
 - BUT average absolute net international migration has barely changed. Paradox?

Bayesian Hierarchical Model for Net International Migration Rates

▶ We model the net international migration rate, r_{c,t}, in country c and time period t by an AR(1) time series model as

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \varepsilon_{c,t}$$

- Too few data points (12) to estimate the model reliably in each country by itself
 - Solution: For each country, draw on information from other countries
- Bayesian hierarchical model:
 - Model parameters for countries distributed about "world average"
 - World average parameters have a prior distribution
 - Bayesian estimation using Markov chain Monte Carlo (MCMC)
 - \blacktriangleright Estimate for a country \approx weighted average of its estimate and world average estimate
- Gives a sample of many possible future trajectories of migration in all countries and periods

Ensuring Balance

- Net migration counts sum to zero across the globe for all periods and sex-age groups
 - But trajectories from the BHM do not do so
- Solution: Postprocess each trajectory to ensure balance. Method:
 - 1. For the *k*-th simulated parameter vector, project net migration rates for all countries one time period into the future.
 - 2. Convert net migration rate projections into counts.
 - 3. Break down migration counts by age and sex via model migration schedules
 - 4. Redistribute overflow migrants to all countries, in proportion to their projected populations.
 - 5. Continue projecting trajectories one time step at a time into the future, repeating steps 1-4.

Cross-Validation Prediction Experiment: Calibration of Prediction Intervals

- ▶ Net migration rates for 1950–2010 in 5-year periods from WPP
- ► Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Coverage of prediction intervals (%):

Validation time period	80% PI	95% PI
5 years	91	96
15 years	85	93
30 years	77	89

Method reasonably well calibrated at all forecast horizons

Accuracy of Projections

Compare point predictions with

- Persistence model: Migration rates remain constant at current values. Similar to WPP projection.
- Gravity model (Cohen 2012)

Mean Absolute Errors by validation time period (smaller is better):

Method	5 years	15 years	30 years
Persistence	3.6	6.7	7.2
Gravity	4.7	6.6	12.3
Bayesian	3.2	4.8	5.1

Bayesian method outperformed others at all forecast horizons

Frequency of Cross-Overs Between Being a Sending and Receiving Country

- Over the past 60 years, 46% of countries have crossed over from being a sending to a receiving country, or vice-versa.
- Proportions predicted over the next 60 years:

0%
29%
49%
46%

Resolution of Global Migration Trends Paradox

- > Propn. migrating increasing, but average migration rate constant
 - ▶ Resolution: Due to low migration rates for big countries:

Abs. Migration Rates Among Largest Countries

Bayesian model successfully reproduces it:

Denmark

Denmark Rates

- Crossed over from sending to receiving country
- Median projection: continuing (but declining) in-migration
- But nonnegligible probability of renewed out-migration
 - and also of increased in-migration

Nicaragua

Nicaragua Rates

- Classic sending country with high out-migration
- Median projection is for this to continue, but at a reduced rate
- Continued high out-migration, and becoming a receiving country by 2100, also (less likely) possibilities

India

India Rates

- ▶ Large country with very low migration rates (< 1 per 1,000)
- Median projection continues near zero
- But absolute migration rates projected to increase, closer to the world average (across countries) of 5 per 1,000.

Rwanda

Rwanda Rates

- Dominated by large spikes in 1990s
- Median projection is close to zero
- But allows for the possibility of future large spikes

Summary

- Probabilistic migration projections needed for fully probabilistic population projections. They should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant
- We propose a Bayesian hierarchical AR(1) model for projecting net international migration rates for all countries
- Reasonably well calibrated and outperformed some other methods in cross-validation prediction experiment
 - Also predicted cross-overs and reproduced the migration paradox
- Possible improvements:
 - Better data (Abel 2013)
 - Apply to in-migration and out-migration (Abel, Sander, Samir 2013)
 - Demographic covariates (Kim & Cohen 2010; Billari & Dalla-Zuana 2012)
- Probabilistic population projection references at www.stat.washington.edu/raftery/Research/soc.html