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1. INTRODUCTION

The paper focuses on the uncertainty of internationigration predictions, as well as on their capsnces for
population projections and information delivereddecision makers. One of the key questions aboolbglilistic
population forecasting is how its outcomes — theljmtive distributions — can be useful for policgking and planning
purposes. Some insights in that respect can bendirmm the statistical decision analysis, whicheginto account the
potential costs of both under- and overestimatibrthe variables under study, for example of currentfuture
migration flows. The on-going paradigm shift in degraphic projections, from deterministic to stodltasan thus be
brought even further, to the field of decision sopppln that regard, the paper presents the preéines of Bayesian
decision analysis together with some examples cairgginternational migration forecasts.

Another important issue concerns the assumptiorterahout the migration component of demographieptiens. In
particular, the consequences of various assumptionserning stationarity and variability of migati processes are
discussed and evaluated. In this context, thediioits of predictability are sketched for consitieraboth by forecast
providers and users. Such limitations include, agnathers, the plausible horizon of population pegdns, as well as
realistic expectations with respect to their outesmin addition, several decision-making strategiesler low
predictability, alternative to formal statisticalalysis, are discussed on the basis of recent adusents in the decision
sciences. It is argued that instead of striving doachievable precision of forecasts, especiallth wespect to
migration, the providers and users of demograplecliptions could make a joint attempt to encomphesnevitable
uncertainty within the decision-making process.thAfocus on this objective, a draft outline of iatetive population
forecasting based on the Bayesian statistical rads proposed, together with a brief discussibsame promising
areas of future research.

The current paper makes an attempt to deal witluticertain forecasts from the policy-oriented pectipe of forecast
users (decision makers). Hence, Section 2 presetfusef introduction to the decision analysis frone Bayesian
perspective. Section 3 contains an overview ofditge and discussion on the generic limits of jotexhs under
uncertainty from the point of view of forecast wseFinally, in Section 4, an interactive approashdemographic
forecasting is proposed, with an increased rokhefdialogue between forecasters and users.
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2. INTRODUCTION TO BAYESIAN DECISION ANALYSIS

Decision analysis and support cover many methadd) as mathematical statistics and operationahreBeand many
areas of applications. In public policy and plamnielated to demography and migration, decisiomsraade on a
variety of levels, from local authorities throughtional governments to multi-national bodies, sashthe European
Union. A distinction can be made here between phajrelated decisions, as in the case of spatigdmisation, and
more general and strategic policy design, suchmasigration policies of particular countries or dietwhole EU.
Planning-related decisions require some numenngalt whereas the strategic ones are guided by geweral, largely
qualitative, advice; still, all of them are madedanthe conditions of uncertainty. This sectionlsledth a statistical
decision analysis, suitable for the former (quaattie) types of problems, while Section 3 providesne general
guidance to the second type of policy challengespgsed on the basis of recent advancement in dstiag and
decision science.

The approach presented here follows the Bayesiaspeetive, since the very axiomatic constructionBafyesian

statistics is firmly grounded in the decision asédy as thoroughly discussed e.g. by DeGroot (198Y), Bernardo
and Smith (2000), or Robert (2001). Within the feamork of statistical decision problems, such asnegton or

prediction, the decisions often concern the choicene value from the relevant probability disttibns, depicting the
possible ‘states of nature’ and how likely are theyccur. In the context of demography, the deaoisinalysis was
discussed for example by Alho and Spencer (20@3¢rning to population estimates, whereas the atipaper will

focus more on applications to population forecastin

The decision-analytic foundations of Bayesian stas rely on the axiomatic definition of the (ubwdounded) utility
functionu, being a measure of preference, defined overgheesof possible outcom&sof decisiond, so thau: Q x

D — R (idenm). As most persons, and even more so the policyemsalappear to be risk-averse, their utility fuoics
are concave and bounded from above, convex furtieing reserved for “risk lovers” (Robert, 2009).5or public
policy applications the cautious attitude to ura@tt is especially vital due to the possible lasgale consequences of
wrong decisions, in particular involving taxpayemsoney.

Within the Bayesian paradigm, the decision analgdfers a useful framework for calculating pointiestes or
forecasts from the relevant posterior or predictigributions. In order to do it, a non-negatigss functiorL: Q x D
— R, has to be defined over the space of possiblesstiftnaturg w 0 ©, and decisiond [0 D. The loss function can
be defined simply as negative utility(w, d) = —u(w, d) (DeGroot, 1970/1981: 106; Robert, 2001: 60). Thisction
describes the loss (or cost) of making particutisionsd aboutw, in particular, the wrong ones.

In order to obtain an optimal decisions in a Bagms$ramework, leP denote the probability distribution defined over
0 Q. For every possible decisiah] D, the expected loss under this distribution, kn@asrisk and denoted by(P, d)
can be calculated as (e.g. DeGroot, 1970/1981:106)

(1a) p(P,d) = I L(w,d) p(w)dw, for continuous, or:
Q

(1b) p(P,d) =" L(w,d)p(w), for discreteP,
waQ

wherep(w) respectively denotes the density or probabilitiyction of the distributioP. It is additionally assumed that
such expected loss exists and is finite. The optiBayesian decisio* is then suchd for which the risk (1) is
minimised (dem):

@) * = arg ming{p(P, d)}.

This decision is specific to the probability dibtrition P and the loss functioh. In practice,P is usually either a
posterior distribution for estimation problemsagpredictive distribution in forecasting applicaiso

One of the important issues concerning the chdi@elass function is its symmetry. Symmetric funas can be useful
to obtain point estimates of the central charasties of the relevant distributions. It can be shde.g., Bernardo and
Smith, 2000: 257) that the quadratic loss functi¢w, d) = a (w — d)® yields the mean of the posterior or predictive
distribution as the optimal solution, whereas theadute value functioh(w, d) = a |w —d| yields the median. Similarly,
for the point functiorL(w, d) = 1—1,-4, Wherely is the indicator function, equal oneXfholds and zero otherwise, the
optimal solution is the mode of the distribution.dll cases it is assumed that the relevant cteristits existifem).
However, as noted by Lawreneeal. (2006), in many real-life forecasting situatiolss function is asymmetric.

A simple example of an asymmetric loss functiorofighe linear-linear (LinLin) form, whereby (e.geBardo and
Smith, 2000: 257):

2In the general cas® is not restricted to the space of model param@etsut can depict any quantity of interest, suclfoascasts, in all instances
reflected through the respective posterior or mtadi distributions depicting uncertainty. Notatiorthis paper follows DeGroot (1970/1981).
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3) L(w, d) = a (W —d) Ly + b-(d = W)-Lypa.

The optimal solution of the decision problem isrthiee quantile of rank/(a+b) from the relevant distributioridem).
For a = b the problem thus reduces to the one under thewbsamlue functiora |w —d|, and yields a median solution,
as discussed above. For more complex, possiblylinear cases, Varian (1975) introduced the linegueaential
(LinEx) loss function, defined as (after: Zelin2986: 446):

(4) L(w, d) = b-{exp[a:(w—d)] —a(w—d) - 1}.

This function is “almost linear” fow < d and “almost exponential” fow > d in cases whea > 0, and the opposite
holds whera < 0 (idemn). It can be also shown (Zellnédem 447) that the optimal decisiond$ = (-1&)-In{E [exp(—
aw)]}, where E\(°) is the expected value with respect to the distitim of w over Q. It is assumed that this expected
value exists, as for example in the case of Nomittibutions. Noteworthy, fexp(-aw)] is the moment-generating
function for the density ofv (iden).

As an example, consider a Bayesian forecast oftexgid immigration based on relatively low-precgis&ssumptions a
priori, short time series of data and a simple camdvalk model (see e.g. Bijak and diowski, 2010). Let the
forecasted number of immigrantdl, follow a predictive log- distribution such that-Bn(M) — 11] ~t;,, wherety,
denotes a centraldistribution with 10 degrees of freedom, mean zand precision of one. For linear (LinLin) loss
functions, the appropriate decisions are quantigeld and thus invariant under positively monotoriarssformations.
The appropriate quantilescan be computed by transforming the relevant glegntiom thet, distribution,q’, using
the formulag = exp/3+11).

Hence, for instance, where underestimation is twiseostly as overestimation, the decision would&sed on the
upper tertile of the predictive distribution. Inigtcase, the point forecast of the number of imaritg equals about
69,448. In the opposite situation, with overestioratwice more costly, decision is based on theelotertile, that is,

51,620 immigrants. In turn, for the symmetric lindé@ss function the optimal choice is the predietimedian (59,874
immigrants). Finally, under a point loss, the résgl decision is the mode of the predictive disitibn, usually not

invariant under transformations, which has to bevdd numerically from the target ldgdistribution (the solution
being about 54 thousand immigrants). All the decisifrom the presented stylised examples are slioviAgure 1

together with the underlying predictive distributidt is worth noting that if the loss functions neeof higher orders,
for example quadratic or LinEx, optimal decisionsuld not exist, since due to the heavy tails, tetldistributions

do not have positive moments.

From the statistical point of view, the quantilesbd solutions under simple LinLin functions havenamnient

properties. Firstly, quantiles are robust agaihst presence of outliers in the distributions. Sdbgnthey remain

invariant under positively monotonous transformagioT hirdly, alternative statistics may not alwayist, as moments
in heavy-tailed distributions, or more than oneuoh may exist, as distributions can have manyeso8esides, from
the point of view of interactions between forecestnd forecast users, elaborated further in Se&jsuch functions
as the LinLin can be more straightforward to elfmiim the forecast users.

Figure 1. Examples of optimal decisions for a tatistribution with 10 d.f.
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3. LIMITATIONS OF MIGRATION AND POPULATION PREDICTI ONS

The optimal decisions, such as the ones outlingddrprecious section, can be useful in the cordegtanning, where
the decisions should be based on certain numgrarameters, such as the expected numbers of ngg@sgociated
costs, etc. However, there are many other decisgitings in which, given the prevalent uncertaintyg room for
manoeuvre is much more limited. In that regard,ntost notable problems with the traditional apphotcforecasting
include assumptions that the future will resemhke past and that events under study are indepenalich need not
hold in complex, network-based systems (Makridakid Taleb, 2009). Among other flaws of the tradisibapproach,
the use of tractable, thin-tailed error terms (saslGaussian), the assumption of the existencdioita variancé, and

the human tendency to underestimate uncertaintypeanentionedider).

A synthetic typology of decision situations undercertainty was proposed by Taleb (2009). He disistged four
classes according to the type of uncertainty (thiled versus all other types, including unknowa)d the type of
payoffs (linear versus non-linear). The ‘payoffgré are akin to the utility (or negative loss) fiimes introduced in
Section 2. Taleb’s analysis further focused onhheldly- or completely unpredictable events carryrogsibly non-
linear payoffs. As discussed in the previous sectior the thin-tailed (e.g. Gaussian) uncertaimytimal decisions
exist even for some non-linear loss functions, sashLinEx. Under linear loss functions, moment-basetimal
decisions exist even for heavy-tailed distributiomssuming that the latter can be properly appratéoh However, in
heavy-tailed non-linear cases, the statisticalgiecitheory fails. In such instances, it has tadpmaced by general,
common-sense decision-making strategies, unlesgridgem can be reduced to other types, for exafmplehanging
or bounding the loss functioridem?. This is important especially in the migration tof, where the relevant
distributions can rarely be expected to be thitethidue to the dynamic and changing nature optheess.

Makridakis and Taleb (2009) summarised several comsense strategies for the use of forecasts.r Thest
important recommendations include: avoiding théu&ilon of control” (or illusion of having accurafgedictions,
which can bring about dangerous consequences;rellseant for demographic and migration applicatjpasiopting
protective strategies, and setting up backup péarts additional “reserves” of resourcédefr). Such reserves may
seem redundant and unnecessary from the pointeof of optimal decision making, although the lattahelled by
Taleb (2009) as “overoptimisation”, was heavilyticised for making the complex systems in questimch more
vulnerable to unpredictable or hardly predictaivents.

Another strategy suggested by Makridakis and T&e9) was to apply the “minimax” approach to decisnaking,
minimising the maximum potential losses (in thehaws’ terminology: maximin, maximising the minimpayoffs).
However, from the Bayesian point of view this smgt, if it uniquely exists, has several drawbadkmimax decisions
exhibit bias towards the worst-case scenarios Ighst favourable prior distributions), do not také account all
information available and despite their construtitan sometimes lead to worse outcomes than theages that are
less pessimistic with respect to the states ofreaf@obert, 2001: 66—77). According to Bernardo &meith (2000:
449), although some minimax solutions may be aed®ptas optimal Bayesian decisions under certagsipestic
priors, a general minimax rule “seems entirely asmmable”. Besides, in practical application, deion of the least
favourable distributions may pose a serious probletiempts to do so include the analysis of robessnof Bayesian
decisions against changes in prior distributionsm& options here consist in limiting the optimisatiof the risk
function p(p, d) to a certain clasF of prior distributionsp. The resulting solutions are referred tocasditional I'-
minimaxestimates or predictions ¢dzarski, 1998).

The notion of conditiondl-minimax decision rules has led to a concept @’ estimates or predictions. As defined
by Meczarski (1998: 113), atable decision ‘dwith respect to a parametéror predictionx” is the one, for which the
oscillations of riskp(P, d) are minimal for all prior probability distributis P O T

(5) supeon{p(P, d#)} — infgeon{p(P, d#)} = inf ooy {Supgeony { p(P, d)} = infipon {p(P, d)}}.

Meczarski (1998) offered a number of analytical sohg for I-minimax and stable decisiom for some classes of
prior distributions, whilst noting that a more gealetreatment of different statistical models sedrasdly possible.
Nevertheless, from a policy perspective, the priesemotions are certainly appealing, since theyliccqotentially
inform the policy makers, how robust are their diegis against different types of uncertainty degulcby prior
distributions p. For demographers, exploring these options woulditimnally enrich the possibilities offered by
decision analysis to the practical applicationfpfaing the suggestions of Alho and Spencer (2005).

Regardless of the future methodological advancesndram the point of view of forecast users, a @uquestion
becomes: what types of decision problems can beees or aided by forecasts. In this context, O(&807) argued
that appropriate risk assessments are crucialceslydf the potential dangers (negative payofig? large. At the same
time, Orrell (2007) warned against being too riskerae, which can lead to negative externalitiesuoh situations,

% Note that in the examples presented in the custily, the log-predictive distributions for migration rates areakty-tailed and their positive
moments (including variance) do not exist.

4 As one of the practical ways of putting ‘caps’ mayoffs or loses, Taleb (2009) proposed insuraaiteough admitting that this strategy may not
work well under very heavy tails, such as in céseatastrophe insurance (and reinsurance).
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when policy responses can be more damaging thaprtiisbem they were trying to resolve. In the cohtexmigration,
examples of such externalities of either too reste or too lax immigration policies can be, respeely, the loss of
human capital of potential migrants, or an increla&gancial strain on public services and possiiallenges to social
cohesion.

One reason for extreme responses, as suggesteargmceet al. (2006: 504), can be that forecast users tenddasfo
on extreme probabilities of events, close to zarore, and thus prefer such I predictive intervals, for which is
very small (for example, 1 »= 0.95 or 0.99). This is an additional argumentgresenting predictive intervals for
lower probabilities (e.g., with 1»= 0.8 or 0.667), as a way to avoid the illusiorcoftrol (see also Lutzt al, 2004:
37). Lawrenceet al. (2006) cite several studies which suggest thatwittistanding, forecast users tend to prefer
interval forecasts to point forecasts, the formeardy providing more information.

Therefore, a tentative recommendation for the fastars and the forecast users would be that intéovecasts are
useful and can provide valuable information for teeision making, although the intervals should®based on too
high probabilities in order to avoid overconfidenddéarrower probability ranges suggest additionaltica, as the
probability that the variables under study fallsidé the predictive intervals cannot be in suclesasen as negligible
and ignored. On the part of the users, as notetldwrenceet al. (2006), an additional caveat would be that the
performance and expertise of the forecasters shmilde assessed on the basis of their abilityitbnmise the width of
interval whilst maximising the probability. Sucbrécasts are not only very likely to miss, but aisaontribute to
unjustified “illusion of control” among the policyjakers and ultimately generate further problemaddition to the
ones they were supposed to contribute to solving.

A migration-related example of very narrow predietintervals is the forecast of post-EU enlargenmemigration to
the United Kingdom (Dustmanet al, 2003). The underprediction of actual flows by roeee order of magnitude
resulted, among others, from assuming stationafitthe underlying process, which assumption in aafsmigration
can be problematic. At this point it is worth re@teng the potential of Bayesian methods, whiclowalfor including
expert judgement, for example on the low precigibforecasts, next to the data. Moreover, the Bayeisiterpretation

of probabilities as subjective measures of beliefmade explicit to the users, can be also helpfulavoiding
overconfidence in forecasts and admitting theireneimt frailties. Finally, the limited predictabjliof such volatile
processes as migration poses limits on plausillec&st horizons. For example, the expert-based$ayéorecasts of
immigration into seven European countries, prepaseijak and Winiowski (2010) suggest horizons of ten years at
most, echoing earlier suggestions of Holzer (1959).

4. CONCLUSION: FROM PREDICTIONS TO DECISIONS

As argued before, the Bayesian approach can praidembrella framework for forecasting and decisioaking,

providing a coherent mechanism of inference andsaetsupport. However, unlike in other approadefrecasting,
the decision support requires a dialogue betwerstésters and decision makers aimed at tacklingeeif&c decision
problem. This dialogue can further include expértthe field, who can provide prior information,pesially vital in

the absence of reliable quantitative data, asdftesn the case in migration studies. Besidesrgiseal by Lawrencet

al. (2006), combining judgement with data, the verseese of Bayesian inference, leads to better fetet¢han relying
on either data or judgement alone.

Such interactive expert-based Bayesian forecastigifation (or population) could be summarised diovis. After the
forecast users have formulated the problem, thesidecframework is elicited from them by researsh@orecasters).
This framework includes the loss functions, reqiiinerizon and other parameters of the decisioordier to make full
use of the possibilities offered by the Bayesiaprapch, prior distributions of the parameters ef fibrecasting models
can be elicited from the domain experts. Subsetyethese elements are then combined with dataénfarecasting
models, and the final outcomes — forecasts — q@rted back to the users.

The final outcome of the procedure is a set of -gpecific forecasts enhanced by simple decisioncaderovided to
the decision makers. Such forecasts should idealtyprise other elements and caveats, most impbyrtaetuding an
explicit uncertainty assessment and a clear stateofethe limits of predictability. Such interaatiforecasts would
inevitably lose generality, having to respond tedfic problems faced by the decision makers. Hsearchers would
also be no longer fully autonomous in preparingfttecasts and interpreting their outcomes, asthesild emerge in
a multi-stage process involving dialogue with fagtcusers and possibly also other experts. Inwthig the paradigm
shift in demographic forecasting from determinigpigint forecasts, through variant to stochastidjotéons, would
continue towards the decision-analytic outcomeshSorecasts would then become an explicit toolefl-defined
decision support rather than merely a numericalcse.

Also the distinction between specific planning-tethand more general policy-relevant decisions kale an impact
on what is possible in terms of decision suppannfthe point of view of the forecasters. In thenfer case it can be a
proper statistical decision analysis, such as tgeBian one presented before, while in the latiean be, for example,
a set of scenarios, equipped with clear caveatstabwertainty. In the same way as the forecasteosld not promise



the impossible and clearly state the limits of predbility, the users should not expect the impassifrom the
providers of predictions. Therefore, confronting thsers’ expectations with what is actually possistbm the
scientific point of view should constitute the mastportant element of the dialogue between thecfasters and
forecast users.
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