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Introduction

For projecting future mortality in ”Population Projection for Japan: 2006-2055” (NIPSSR 2007), a

new ”age-shifting model”, which incorporates age-shifting as well as age-scaling of mortality, has been

developed and used (Ishii 2008). These kinds of operations could be incorporated into a more general

framework, i.e. an age-transformation approach.

This paper serves to examine and propose a novel method for the mortality projection of Japan that

is an application of the age-transformation approach.

1 Two Representations of the Log Mortality Surface

In this section, we discuss two representations of the log mortality surface and define certain functions

to describe the log mortality and its inverse functions.

Let X = [0, +∞) be the space of age and T = (−∞, +∞) be the space of time. In the following

discussion for modeling mortality, we will use μx,t, the hazard function for exact age x ∈ X at time

t ∈ T. In this paper, we express the log hazard function of mortality as y = λx,t = log μx,t, where

y ∈ Y = (−∞, +∞) is the value of the function. Then, the set S = {(x, t, y)|y = λx,t} determines a

surface in R3, called the log mortality surface. This is a conventional representation of the log mortality

surface. In this representation, y = λx,t would be considered as the height from the X-T plane in R3.

Here, we consider another representation of the log mortality surface under a set of assumptions.

We assume that λx,t is a smooth continuous function with respect to x and t defined on X0 × T0 =

[0, ω] × [t0, t1] ⊂ X × T, where ω < +∞ is the finite maximum age for mortality models.

For the purpose of modeling adult mortality, we can further assume that λx,t exhibits a strictly mono-

tonic increase with respect to x for each t and x > x0(t). Here, x0(t) represents the lower bound of x

above which λx,t exhibits a strictly monotonic increase for each t. Then, for each t, the function λt(x)

defined by

λt : X̃t → Y, λt(x) =
def

λx,t
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is the injective (one to one) function of x, where X̃t = [x0(t), ω]. Let Ỹt = λt(X̃t), then λt(x) : X̃t → Ỹt

has an inverse function νt(y) : Ỹt → X̃t defined on Ỹt for each t.

Let us define Y0 as follows:

Y0 =
def

[y0, y1] where y0 = sup
t∈T0

min Ỹt, y1 = inf
t∈T0

max Ỹt,

Then, we can define νy,t : Y0 × T0 → X0 by

νy,t =
def

νt(y)

νy,t gives the age x at which the value of the log hazard function is equivalent to a value y at time t.

Moreover, we define the following two differential functions by time t: (1) ρx,t: the mortality improve-

ment rate and (2) τy,t: the force of age increase.

ρx,t =
def

−∂λx,t

∂t
= −∂ log μx,t

∂t

τy,t =
def

∂νy,t

∂t

2 Age-transformation

Next, we introduce an age-transformation in mortality analysis. In this paper, we define the age-

transformation as follows.

Def 1. Let x, z ∈ [0, ∞) be coordinates for age. If we have a transformation ft : z → x, which is continuous and

monotonically increasing, we call ft as an age-transformation from x to z at time t.

Let us consider graphical representations of the age-transformation. We use the following two repre-

sentations, the graph of x = ft(z) and an ”iso transformed-age map”.

Here, we look at these graphs with an example of shifting age-transformation, which is defined by

the following equation.

x = ft(z) =
def

max(5t + z, 0) (t = −2,−1, 0, 1, 2)

The relationship among x, z and t is expressed in three-dimensional space as shown in Figure 1.

One way to project this relationship onto two-dimensional space is by plotting the graph of x = ft(z)

for each t on the X-Z plane. Figure 2 illustrates this graph. From this, we are able to read which age in

the original coordinate (x) corresponds to the transformed one (z).

Another way to project onto two-dimensional space is to consider which ages in the original co-

ordinate are identified by this transformation. We can express this by showing a plot ft(y) for y =

0, 1, · · · , 110. We call it ”iso transformed-age map”. Figure 3 is the iso transformed-age map for this

shifting age-transformation. The red lines shows the age 0, 10, ..., 110.
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3 Lee-Carter model and Age-transformation Approach

In Section 2, we introduced an age-transformation approach for mortality analysis. In this section, we

review our preceding work for Japanese mortality projection that combined the Lee-Carter model with

age-transformation (Ishii 2008).

The Lee-Carter model (abbreviated as LC) is expressed by the following formula (Lee and Carter

1992).

λx,t = log μx,t = ax + ktbx

where ax is a standard age pattern of mortality.

Taking a partial derivative by time t, we obtain the following relationship.

ρx,t = −dkt

dt
bx = −k′tbx

This equation shows that the age distribution of ρx,t is constant in the LC model. If we further assume

that kt is linear over time, ρx,t is constant over time. Therefore, the LC model works well when the

age-specific rate of mortality improvement is considered to be constant over time, that is, the mortality

improvement is considered as decline.

Then, when does the LC model fail to express mortality improvement? To observe this point, we

examine the following stylized examples.

Here, we consider two piecewise linear log mortality functions. At t = 0, both functions are identical:

λx,t = −2 for age 0, −8 for age 25, −6 for age 50, −3 for age 75 and −1 for age 100. In Example 1,

age-specific rates of improvement are constant over time. The annual rate of decline is 0.12 for age 0,

0.06 for age 25, 0.06 for age 50, 0.07 for age 75 and 0.04 for age 100.

In Example 2, age-specific rates of improvement for ages under 25 are constant and the same as in

Example 1. However, for ages above 50, the mortality curve shifts to the right 3/5 years annually.
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Figure 4 shows λx,t (top figure) and ρx,t (bottom figure) for Example 1. From the bottom figure, we

can observe that the rates of mortality improvement are constant over time.

Figure 5 shows the same figures for Example 2. From the bottom figure, we can observe that the peak

of the rates of mortality improvement is shifting to the right over time. Such mortality improvement

could not be expressed by the LC model. The black line shows the rate of mortality improvement,

which is equal to the bx function under the LC model. We can observe that this line exhibits an average

rates of mortality improvement for the entire period, even though no actual ρx,t shows such rates of

mortality improvement.
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Figure 4 λx,t and ρx,t, Example 1
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Figure 5 λx,t and ρx,t, Example 2

Following these observations, we could say that use of the LC model may not be considered appropri-

ate if the mortality improvement is considered as shifting. We proposed age-transformation approaches

for projecting Japanese mortality rates since we observed the recent mortality improvement in Japan

could be considered as shifting, though this point is reconsidered later.

The age-transformation approach works as follows. Let us denote the LC modeling and projecting

procedure as L; then the modeled and projected mortality μ̂x,t by the LC procedure would be obtained

as L(μx,t). We proposed performing the Lee-Carter procedure after some age-transformation, and mod-

eling and projecting the rates by inverse age-transformation, i.e., A−1LA(μx,t).

[Lee-Carter model]

μx,t⏐⏐�L

μ̂x,t

[Lee-Carter model with Age-transformation]

μx,t
A−−−−→ μ̃z,t⏐⏐�L

μ̂x,t
A−1←−−−− ˆ̃μz,t

Here, we illustrate how the age-transformation approach will work in Example 2. Let us consider
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the following age-transformation: shifting mortality curves to the left 3/5t years for the group aged

50 and over as in the top figure in Figure 6. Then the transformed mortality rates are in the bottom

figure. Figure 7 shows the age-transformed λx,t and the rates of mortality improvement ρx,t. We can see

that the ρx,t function for the age-transformed mortality is constant over time, and thus the LC model

provides a perfect fit for the age-transformed mortality rates. Therefore, we can model Example 2 using

the LC model with age-transformation. This is a core structure of this approach.
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Figure 6 Age-transformation for Example 2
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Figure 7 λx,t and ρx,t, Example 2 (with
Age-transformation)

In Ishii (2008), we proposed the following age-transformation A for entire age to express the mortal-

ity improvement as a decline in younger age and a shift in older age in order to apply the Lee-Carter

procedure.

First, we fit the three parameter logistic curve

μx,t =
αt exp(βtx)

1 + αt exp(βtx)
+ γt

to the actual mortality rates. Then, we obtain the parameter St = − ln(αt)
βt

, which is used to express the

shift amount in the shifting logistic model (Bongaarts 2005), and another parameter βt, which expresses

the slope of the curve.

Next, let x be the original age and z be the transformed one, and define the relation x = ft(z) as

follows.

ft(z) =
def

⎧⎪⎪⎨
⎪⎪⎩

z (z ≤ B1){
βt0
βt

(B2 − St0) + St − B1

}
z−B1

B2−B1
+ B1 (B1 ≤ z ≤ B2)

βt0
βt

(z − St0) + St (B2 ≤ z)

Then set μ̃z,t =
def

μ ft(z),t.
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Figure 8 shows an example of age-transformation function, and Figure 9 shows the iso transformed-

age map. Using the age-transformation A, modeling and projecting mortality rates are performed as

A−1LA(μx,t).

4 Mortality Improvement: Decline or Shift?

In Section 3, we reviewed the age-transformation approach developed in Ishii (2008). For the mod-

eling of adult mortality, the projection is based on the assumption that the mortality improvement is

considered as shifting. It is suggested from the trends in μx,t and lx,t that the recent improvement in

adult mortality in Japan could be better understood when considering it as shifting. In this section, we

reconsider whether it is more plausible to understand mortality improvement in Japan as declining or

shifting. First, we describe the definitions of the proportional hazard model and the Lee-Carter model,

which are decline-type models. Then, we introduce the horizontal shifting model and the horizontal

Lee-Carter model, which are shift-type models corresponding to the two decline-type ones. Through

this consideration, we propose a new type of adult mortality model and discuss another way to define

age-transformation.

4.1 Decline-Type Mortality Models

4.1.1 The Proportional Hazard Model (PH)

The proportional hazard model (abbreviated as PH) is a simple model that expresses mortality im-

provement as decline. In the PH model, λx,t: the log hazard rate function at time t is expressed by

λx,t = log μx,t = ax + kt

where ax: the baseline logged hazard rates.
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In the PH model, ρx,t: the rate of mortality improvement

ρx,t = −dkt

dt
= −k′t

is constant with respect to age. This is the differential form for this model.

In this paper, we fit and numerically evaluate the models against the Japanese female mortality. We

use

mx,tc , x = xs(= 25), · · · , xe(= 110) and tc = ts(= 1970), · · · , te(= 2007)

from the HMD (Human Mortality Database), where tc is a calendar year.

Here, we set ax as the average log hazard rate in the entire period. Figure 10 shows the actual log

hazard rates (λx,tc ) and the estimated rates with the PH model. We can observe that the estimated rates

do not exhibit good fit particularly in the older age groups. Figure 11 shows the difference between the

actual and estimated rates. From this graph, we can see that the actual values are higher than those

of the model for age around from 60 to 80 in 1970, whereas these values are decreasing over time.

However, opposite movement is observed for ages over 90. This is caused by the limitation of the PH

model whereby the rate of mortality improvement is constant with respect to age.
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Figure 10 Mortality Rates (Actual and
Model, PH)
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4.1.2 The Lee-Carter Model (LC)

The LC model is already defined in Section 3. It expresses mortality improvement as decline in a

more general manner as compared with the PH model. Here, we set ax as the average log hazard rate

for the entire period. Figure 12 shows the actual log hazard rates (λx,tc )and the estimated rates by the

LC model. This figure illustrates that the fit with the actual values is fairly improved by using the LC

model, due to its flexibility which admits different mortality improvement rates by age.
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However, we can observe from Figure 13 that the difference between the actual and estimated rates

exhibits a trend whereby the actual values are higher in younger age groups and lower in older age

groups near the beginning and the end of the entire period, whereas the opposite is true around the

middle of the period.

The reason why this trend for the error components is observed is ascribed to the change in the age-

specific mortality improvement rates over time. Therefore, we will next examine the ρx,t functions for

these two models.
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Figure 12 Mortality Rates (Actual and
Model, LC)
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Figures 14 and 15 show the ρx,tc functions for the actual values and the estimated values for each of

the two models. The blue lines show the ρx,tc by the actual mortality rates. We can observe that most of

the mortality improvement rates have mountain-shaped curves with peaks. In contrast, the mortality

improvement rates under the PH model, expressed by the pink line, are horizontal. This difference

in shape would be viewed as a cause that the estimates by the PH model are not well-fitted, as we

observed before.

The mortality improvement rate by the LC model, indicated with the green curves, has a peak like

that of the actual value, and this improves the fit as we have seen before. However, the age distribution

of the rates is fixed in the LC model, whereas it changes dynamically in the actual values.

Thus, the actual age distribution of mortality improvement rates change over time and are not con-

stant as in the LC model, and caused the propensity for the error in the LC model observed in Figure

13. We could see this result as a limitation when the mortality improvement is considered as decline.
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4.2 Shift-Type Mortality Models

4.2.1 The Horizontal Shifting Model (HS)

Next, we discuss models that express mortality improvement through a shift. The simplest model for

shifting would be one whereby the entire log hazard curve moves to the right-hand side. We can restate

this model using the inverse function of log hazard mortality νy,t, that is, the proportional hazard model

for νy,t.

This model that we call the horizontal shifting model (abbreviated as HS) here is formally expressed

as follows:

νy,t = ay + kt

In the differential form,

τy,t =
dkt

dt
= k′t

Parameter estimation for the HS model is completely identical to the PH models, except for adapting

these procedures to νy,tc instead of λx,tc . Figures 16 and 17 are the actual inverse mortality rates (νy,tc )

and the estimated rates by the HS model, and the difference between the actual and the estimated.

We can see that the performance of fitting by the HS model is much better than by the PH model,

even though both have the same structure. For 1970, indicated with the light blue line, the actual values

are higher in younger ages and lower in older ages, though the errors are not as high for other years.
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Figure 16 Inverse Mortality Rates (Actual
and Model, HS)
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Figure 17 Difference of Inverse Mortality
Rates (Actual and Model, HS)

4.2.2 The Horizontal Lee-Carter Model (HL)

As we considered the LC model which admits a different amount of decline by age and provides a

more general framework compared with the PH model, we can also consider the Lee-Carter model for

νy,t, which in turn supports a more general shifting feature. We call it the horizontal Lee-Carter model

(abbreviated as HL).

νy,t = ay + ktby

In the differential form,

τy,t =
dkt

dt
by = −k′tby

Figures 16 and 17 are the actual inverse mortality rates (νy,tc ) and the estimated rates under the HS

model, and the difference between the actual and the estimated. We can see that the HL model seems to

be improved compared to the HS model. However, it is also observed that the improvement between

the shift pair is not as large as the decline pair. This means that relaxing the limitation, which the force of

age increase in the HS model is restricted to the constant function, does not cause significant improve-

ment of fit in the HL model. It could be explained by the difference in the shape of τy,tc , the force of age

increase.

Figures 20 and 21 show the τy,tc functions for the actual values and the estimated values by the two

shifting models.

We observe that the green curves, which correspond to τy,tc by the HL model, are close to a horizontal

line, which coincides with the force of age increase by the HS model shown in the pink lines. This fact

endorses that the improvement between the shift pair is not as large as the decline pair.
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Figure 18 Inverse Mortality Rates (Actual
and Model, HL)
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Rates (Actual and Model, HL)

However, from the observation of these figures, we have noticed that the blue lines for the actual τy,tc

for each year could be more well-modeled by a linear function of y, which has led us to the development

of a new model: the linear difference model. We will define and examine this new model in the next

section.
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4.3 The Linear Difference Model (LD)

First, we describe the linear difference model (abbreviated as LD) in the continuous form as we did

in other models. In the LD model, we assume that τy,t is a linear function of y for each t.

τy,t = k′t + c′ty

This is the differential form. By integrating both sides with t, we obtain

νy,t = kt + cty + ay

where ay denotes a standard pattern of inverse log hazard rates.

Figures 22 and 23 are the actual inverse mortality rates and the estimated rates by the LD model, and

the difference between the actual and the estimated. From these figures, we can observe that the LD

model fits quite well with the actual values.

This is also confirmed from the observation of τy,tc functions in Figures 20 and 21. We can observe

that the linear assumption for τy,tc in the LD model works better than in the other two models.
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4.4 Comparison of the Models from a Statistical Viewpoint

In this section, we compare the LC and LD models from a statistical viewpoint to examine whether it

is more plausible to understand the recent Japanese mortality as declining or shifting. Our approach is

as follows.

1. The true mortality rates are assumed to be those that are estimated by models.

2. The number of deaths follows a binomial distribution B(Nx,tc , px,tc), where Nx,tc : the number of

the population and px,tc : the death rate for age x and calendar year tc.
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3. Nx,tc is approximated by the closest integer to Ex,tc : exposure to risk.

Here, we took 0.01% as a critical value to construct the confidence intervals (CI), since Nx,t would

present too large value for the Japanese female population. Figure 24 shows the proportion where the

log actual mortality rates are outside of the CIs for each age in the LC and LD models. This indicates that

even though the proportions of LD are higher for certain ages, LD’s performance would be considered

as fairly better than LC’s as a whole. This result suggests that shift is more strongly supported as

recognition of the recent mortality improvement in Japan than decline.
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4.5 Differential Forms and Age-transformations

Next, we consider the relationship between differential forms and age-transformations, and discuss

how the LD model is related to the age-transformation approach.

In section 1, we defined ρx,t and τy,t on the log mortality surface S. Then, the vectors

ρ(x0, t0, y0) = (0, 1,−ρx0,t0)

τ(x0, t0, y0) = (τy0,t0 , 1, 0)

are tangent vectors on S as shown in Figure 25. Each tangent vector defines a tangent vector field on S.

In general, an iso-transformed age map is defined by the projection of the integral curve induced by

the tangent vector field onto a X-T plane. For example, the iso-transformed age map induced by ρ is

an identity age-transformation, and one by τ is an age-transformation that identifies the ages that yield

the same log hazard rates. If we define another tangent vector field on S, then another iso-transformed

age map is induced. Therefore, a tangent vector field on S is considered as another representation of an

age-transformation.
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Let us recall that the LD model is defined by a differential form that is a modeling of τy,t. Therefore, the

LD model defines an age-transformation through the vector field interpretation with a tangent vector

τ. This relationship relates the LD model to the age-transformation approach.

Concluding Remarks

In this paper, we examined and proposed a new method for mortality projection for Japan as an

application of the age-transformation approach.

We considered which is more plausible to understand mortality improvement in Japan as decline or

shift. First, we described the definitions of the proportional hazard model and the Lee-Carter model,

which are decline-type models. Then, we introduced the horizontal shifting model and the horizontal

Lee-Carter model, which are shift-type models corresponding to the two decline type ones.

Next, we noticed that the actual τy,tc for each year could be well-modeled by a linear function of y,

and proposed the linear difference (LD) model. We observed that the LD model coincided quite well

with the actual values.

Then, we compared the LC and LD models from a statistical viewpoint to examine whether it is

more plausible to understand the recent Japanese mortality as a decline or shift. We observed that LD’s

performance would be considered advantageous over LC’s as a whole. This result suggests that shift is

more strongly supported as recognition of the recent mortality improvement in Japan than decline.

Finally, we considered the relationship between differential forms and age-transformations, and dis-

cussed how the LD model is related to the age-transformation approach. In general, an iso-transformed

age map is defined by the projection of the integral curve induced by the tangent vector field onto

X − T plane. Therefore, a tangent vector field on S is considered as another representation of an age-

transformation. The LD model is defined by a differential form that is a modeling of τy,t. Therefore,

the LD model defines an age-transformation through vector fields interpretation with tangent vector τ.

This relationship relates the LD model to the age-transformation approach.

In this paper, we confirmed that the LD model is efficient, although we noted further points that

should be examined. First, we discussed only the adult mortality model here, whereas the entire age

model should be developed. Second, we focused on the modeling of the actual values in this paper,

whereas we should consider how to project the parameters. These points should be studied in future.
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