
WP. 33
ENGLISH ONLY

UNITED NATIONS STATISTICAL COMMISSION and
ECONOMIC COMMISSION FOR EUROPE

CONFERENCE OF EUROPEAN STATISTICIANS

Work Session on Statistical Data Editing
(Ottawa, Canada, 16-18 May 2005)

Topic (iv): New and emerging methods, including automation through machine learning,
imputation, evaluation of methods

DATA EDITING AND LOGIC

Supporting Paper

Submitted by the Research School of Information Sciences and Engineering,
Australian National University1

I Introduction

1. Automated data editing typically involves three steps:

Testing a data record against the edits.

Error localisation: Finding a smallest (weighted) set of fields that can be changed to
correct the record.

Imputation: Changing those fields so as to preserve the original joint frequency
distribution of the data as far as possible.

In this paper we concentrate on the second step, error localisation. Our objective is to
convert the error localisation problem to a corresponding logical problem.

2. Why do this? Logic is the study of deduction, and most methods of automated error
localisation can be seen as a trade-off between search and deduction, where search means
systematically testing potential corrections to the erroneous record, and deduction means
finding some set D(E) of edits logically implied by the set E of pre-defined edits. A
conversion of the error localisation problem to logic could be useful because there are many
automated logic tools which could be relevant to error localisation.

3. Our overall plan is to use logic to formalise the deduction component, as opposed to
the search component, of automated error localisation. Initially we have looked only at a
‘pure deduction method’, where no search is needed at all. An example of a pure deduction
method is the Fellegi-Holt method [9].

1Prepared by Agnes Boskovitz, Rajeev Goré and Paul Wong (agnes.boskovitz@anu.edu.au,
rajeev.gore@anu.edu.au, wongas@mail.rsise.anu.edu.au).

1



4. All of the pure deduction methods depend on the ‘covering set method’ which we
define precisely in Section II. Here we just point out that the covering set method uses
D(E) to seek an error localisation solution for each record.

5. However the set of results obtained by the covering set method can include some
non-solutions of the the error localisation problem and need not even include all of the error
localisation solutions. That is, the covering set method is not always successful. Its success
depends on the definition of the set D(E). For example when D(E) is constructed using the
Fellegi-Holt method then the covering set method finds exactly all of the error localisation
solutions. But for other definitions of D(E) the covering set method fails. When the
covering set method finds exactly all of the error localisation solutions we say that the
method of constructing D(E) is ‘(smallest weighted) covering set correctible’.

6. In this paper, we will formalise ‘covering set correctible’ in terms of logic, in
Sections III and IV, each of which deals with a different class of edits. It turns out that
covering set correctibility is related to error localisation just as certain corresponding logical
constructs are related to each other. The corresponding logical constructs are ‘refutation
completeness and soundness’, explained in Section III, and the ‘satisfiability problem’,
explained in Section V. But first, in the next section, we explain some basic notions.

II Assumptions, Definitions, Notation and Examples

7. In this section we define our main notions including records, edits, deduction, the
covering set method and covering set correctible. We will illustrate with some simple
examples which will be used throughout the paper.

8. We assume that we are dealing with data arranged in records. A record R is an
N -tuple (R1, . . . , RN ), where Rj ∈ Aj , where Aj is the domain of the j-th field. We assume
that N is fixed for all records under consideration. We assume that the edits used to specify
potential errors in the data apply to one record at a time. Contrary to common practice, we
will say that each edit specifies an acceptance region of the set of all possible records,
whereas commonly edits are rejection regions. A record satisfies an edit when it is in the
acceptance region.

9. We will classify edits into two types: categorical, also known as discrete; and
arithmetic, also known as numerical or continuous. Categorical edits deal with data that
has discrete structure, such as marital status, or with numerical data that can be discretised
while still retaining the edits. For example the edit ‘if age < 15 then marital status = never
married’ is categorical because the field age can be discretised to [0, 14] and
[15,maximum age]. Arithmetic edits deal with numerical data that has not been
discretised, for example −2x1 + x2 ≥ 0, where x1 and x2 are real variables representing the
values of fields 1 and 2 respectively.

10. We will work with the following two simple contrived examples.

Example II.1 (for categorical edits) In a table of data about school children, each
person is represented by a different row (or record). The table consists of the following
three fields:

age: the age of the person

2



driver: whether the person has a driver’s licence
grade: the person’s school grade level.

The domains of the fields are Aage = {5, 6, . . . , 20}, Adriver = {Y,N}, and
Agrade = {1, 2, . . . , 12}. There are two edits specified:

Edit C1: A person with a driver’s licence must be in at least Grade 11.
Edit C2: A person in Grade 7 or higher must be at least 10 years old.

We will write EC = {C1,C2}. The record RC = (6,Y, 8), with age = 6, driver = Y and
grade = 8, fails both edits.

Example II.2 (for arithmetic edits) A table of numerical data has three fields, and x1,
x2 and x3 are variables representing the field values. The domain of each field is the set of
real numbers R. There are two edits:

Edit A1 : −2x1 + x2 ≥ 0
Edit A2 : x1 + 3x3 ≥ 0 .

We will write EA = {A1,A2}. The record RA = (1, 0,−1) fails both edits.

11. Given an edit set E, the edit set D(E) is found via a deduction function D, which
takes any set of edits as input and returns a set of edits as output. That is,
D : ℘(Edits) −→ ℘(Edits), where ℘(Edits) is the set of all sets of edits. Traditionally
deduction functions such as D are called consequence or closure operators [14] and are
defined over an entire logical language. Intuitively, a consequence operator maps an
arbitrary set of logical descriptions (the assumption set) to a set of logical descriptions (the
consequence set) that are implied by the assumption set.

12. Fellegi and Holt used a function that we will call DFH, which gives a set of
categorical edits logically implied by the categorical edit set E. Other deduction functions
described in the literature include Fellegi and Holt’s ‘essentially new’ deduction [9] (which
we will call DENFH) and the deduction function defined by the Field Code Forest Algorithm
of Garfinkel, Kunnathur and Liepins [11] (which we will call DFCF).

Example II.3 (for categorical edits) For the deduction function DFH, it turns out that
DFH(EC) = {C1,C2,C3} where C3 is:

Edit C3: A person with a driver’s licence must be at least 10 years old.

Edit C3 is logically implied by Edits C1 and C2. Note that the record RC fails C3.

13. For arithmetic edits, one deduction function is defined by eliminating variables by
taking positive linear combinations of inequalities, as done in the Fourier-Motzkin
elimination method [10, 12]. We will call this deduction method DFM (see Fellegi and
Holt [9], and de Waal [7]).

Example II.4 (for arithmetic edits) For the deduction function DFM, it turns out that
DFM(EA) = {A1,A2,A3} where A3 is obtained by adding Edit A1 to twice Edit A2:

Edit A3 : x2 + 6x3 ≥ 0 . Note that the record RA fails Edit A3.

14. For any deduction function D, the covering set method, defined below, tries to find
an error localisation solution for any record R and any edit set E. Its success depends on
the properties of D.

3



15. We will define the covering set method and describe the relevant properties of D
shortly but, first, we note that we will simplify the discussion slightly. Instead of describing
methods that find all smallest weighted error localisation solutions, we will describe methods
that find all error localisation solutions, or equivalently, methods that find all minimal error
localisation solutions. The results are essentially the same, but there are some specialised
restrictions for the ‘smallest weighted’ case which are just complicating side-issues.

16. The covering set method depends on an ‘involved field’ : informally, a field is
involved in an edit if it is mentioned in the edit.

Example II.5 Edit C1 involves fields driver and grade. Edit A1 involves fields 1 and 2.

17. We can now give the steps in the covering set method :

(a) Find the set X(D(E), R), abbreviated as X, consisting of the edits of D(E)
failed by R.

(b) Find a set C of fields that covers X in the sense that every edit of X involves
some field of C.

The objective of the covering set method is to use the covering set C to find an error
localisation solution for the record R and the edit set E, as follows: Find a record
R′ = (R′

1, . . . , R
′
N ) such that (i) R′ satisfies E, and (ii) R′ differs from R at most on C, that

is, if j 6∈ C then R′
j = Rj . When such an R′ exists, we have an error localisation solution,

and we say that the field set C yields a correction of the record R for edit set E. The
covering set method works for some deduction functions D but not for all, as demonstrated
by the next examples.

Example II.6 (for categorical edits - unsuccessful D) The identity deduction
function I has I(E) = E for each edit set E. The covering set method does not always work
for I. For example, X(I(EC), RC) = EC and one covering set is {grade}. However it is
impossible to correct RC by changing only the field grade.

Example II.7 (for categorical edits - successful D)
X(DFH(EC), RC) = {C1,C2,C3}. The covering set method always works for the deduction
function DFH. One covering set of X is {grade, driver}, which yields a correction to RC, for
example by changing driver to N and grade to 1.

Example II.8 (for arithmetic edits - successful D) The record RA fails edits A1, A2
and A3. Hence X(DFM(EA), RA) = {A1,A2,A3}. The covering set method always works
for the deduction function DFM. One covering set of X is {field 1, field 2} which yields a
correction to RA, for example by changing the value of field 1 to 4 and the value of field 2
to 10.

18. We want the covering set method to result in an error localisation solution for any
covering set C of X, for any record R and any edit set E. We also want to be able to find
all possible error localisation solutions by suitable choices of C. This happens for certain
deduction functions, and we say that the deduction function D is covering set correctible if
D has the following two properties:

(i) For each record R and each edit set E, each covering set C of X(D(E), R) yields
a correction of R for E. In this case we say that D has the error correction
guarantee or ECG.

4



(ii) For each record R and each edit set E, if R′ satisfies E then R′ could have been
obtained by the covering set method: that is, there is a C containing
{j ∈ {1, . . . , N} | R′

j 6= Rj} such that C is a covering set of X(D(E), R). In this
case we say that D has error correction totality or ECT.

19. In the next sections we formalise covering set correctibility. We consider categorical
edits in Section III and arithmetic edits in Section IV.

III Formalisation of covering set correctible for categorical
edits

20. In order to formalise ‘covering set correctible’ for categorical edits we will formalise
the following:

(a) edits – as logical formulae

(b) records – as truth functions

(c) satisfaction relation, i.e. ‘a record satisfies an edit’ – when the appropriate truth
function applied to the edit is true.

(d) deduction – as already defined as a function in Section II. We will use
Fellegi-Holt deduction as an example.

(e) covering set of the edits failed by a record – a property of the field set and the
record, which we specify in Lemma III.1

(f) a field set yielding a correction to a record – a property of the field set and the
record, which we specify in Lemma III.2.

The property ‘covering set correctible’ is a relationship between the above items (e) and (f).
This relationship is specified in Proposition III.1, which turns out to be a strengthening of
‘refutation completeness’ and ‘soundness’, explained at the end of the section.

21. We will use classical propositional logic where formulae are built from a set of atoms,
called Atoms, using the boolean connectives ∨ (or) and ¬ (not). Our atoms represent
individual field values, as in Bruni [3]: for example, p6

age stands for ‘age = 6’. The set Atoms
is {pv

j | j = 1, . . . , N, v ∈ Aj}, so that pv
j captures that the field j has value v. A result of

logic tells us that each logical formula can be represented by a set of special formulae called
clauses which are built from atoms or negated atoms (¬pv

j ) using only the propositional
connective ∨. We represent edits as clauses. Indeed, we will see below that each edit can be
represented as a positive clause, which is a clause built from atoms using only ∨, with no
use of ¬.

Example III.1 In order to represent the categorical edit C1 as a clause, we consider the
two exhaustive cases driver = Y and driver = N. When driver = Y, then C1 is satisfied
exactly when grade is 11 or 12. When driver = N, then C1 is satisfied. Hence C1 can be
represented as

C1 = pN
driver ∨ p11

grade ∨ p12
grade .

Similarly, C2 = p10
age ∨ · · · ∨ p20

age ∨ p1
grade ∨ · · · ∨ p6

grade .

5



Note that we have doubled up the use of the notation C1 and C2 - allowing C1 and C2 to
refer both to edits in terms of words and edits in terms of logical clauses. The context
should prevent confusion.

22. Each record R is represented by a truth function fR : Atoms −→ {true, false} which
can be extended uniquely to a truth function on any clause, including on edits. The record
R satisfies the edit e when fR(e) = true. There are restrictions on which truth functions
can serve to represent records because records have specific constraints: each component of
each record takes exactly one value. This means that a truth function must map to the
truth value true each of the following clauses, called ‘axioms’ :

Axiom 1 : ¬pv
j ∨ ¬pw

j , for all j = 1, . . . , N and for v 6= w. (Each field of a record has at
most one value.)

Axiom 2 :
∨

v∈Aj
pv

j , for all j = 1, . . . , N . (Each field of a record has at least one value.)

Example III.2 For RC = (6,Y, 8), the corresponding truth function fRC is defined by
fRC(p6

age) = fRC(pY
driver) = fRC(p8

grade) = true. For all other atoms p, fRC(p) = false. For the
edits, fRC(C1) = fRC(C2) = false, meaning that the record fails both edits.

23. By Axiom 2, any negated atom ¬pw
j always has the same truth value as the positive

clause
∨{

pv
j | v ∈ Aj \ {w}

}
. By replacing each negated atom in clause e1 by its

corresponding positive clause, we obtain a positive clause e2 with the same truth value as
e1. Hence we can represent each edit as a positive clause. In general an edit has the form

e =
∨{

pv
j | j = 1, . . . , N and v ∈ V e

j

}
,

where V e
j ⊆ Aj . If V e

j = ∅ for all j then e is the empty clause, written as �, and called
‘box’, which is assigned to false by every truth function, and which is the undesirable edit
that fails all records. If V e

j 6= ∅ then we say that the edit e involves field j.

24. The three deduction functions described in the literature (DFH, DENFH and DFCF)
can be expressed in terms of our logical formalisation. For example the function DFH is
defined as follows. Given a set E of edits, let E′ be any subset of E and let i be any field.
Define the DFH-deduced edit on E′ with generating field i as FHD(i, E′) where

FHD(i, E′) =
∨{

pv
j

∣∣ j ∈ {1, . . . , N} \ {i}, v ∈
⋃

e∈E′

V e
j

}
∨

∨{
pv

i

∣∣ v ∈
⋂

e∈E′

V e
i

}
.

This is identical to Fellegi and Holt’s definition, except it is in terms of the acceptance
region rather than the rejection region. Fellegi and Holt’s ‘normal edits’ are the same as our
positive clauses. Given a starting set E of edits, the edit FHD(i, E′) can be found for all
subsets E′ of E for all generating fields i. The newly found edits can then be added to E
and the process repeated until no new edits are generated. At any time, we can remove any
edit that is a superset, as a set of atoms, of some other edit in E. Such removed edits are
called ‘dominated’ in the editing literature (Garfinkel, Kunnathur and Liepins [11],
Winkler [15]), and ‘subsumed’ in the logic literature [4]. The process will eventually
terminate if the field domains are finite. The end result is the edit set DFH(E).

Example III.3 FHD(grade, EC) = p10
age ∨ · · · ∨ p20

age ∨ pN
driver . This clause is a logical

representation of Edit C3, and is the only positive clause that can be generated. Hence,
DFH(EC) = {C1,C2,C3} .

6



25. It turns out that DFH, DENFH and DFCF are all subfunctions of a deduction
function, important to logic, called ‘resolution’. The details are given in Boskovitz et al [2].

26. Hence certain subfunctions of resolution can be used to do error localisation by the
covering set method. The question is: which other subfunctions of resolution and which
other deduction functions can also be used successfully to do error localisation by the
covering set method? To answer this we need to formalise the covering set method in logic,
through the concepts of:

(i) a covering set X(D(E), R), and

(ii) a field set C yielding a correction of record R for edit set E.

The property ‘covering set correctible’ can then be expressed in terms of these two.

27. We have specified the two concepts above using a set constructed by the
Davis-Putnam-Logemann-Loveland (DPLL) splitting rule [6, 5], important in logic. This
rule can be used when we are given a partial truth function fR,Z (for a record R and a field
set Z) defined by fR(pv

j ) if j ∈ Z and undefined otherwise. The partial truth function fR,Z

can be extended to a partial truth function on all clauses. Given a partial truth function
fR,Z , the DPLL splitting rule reduces an edit set S to an edit set2 S[R,Z]. The reduction
proceeds by removing some edits from S and removing atoms from other edits in S.
Specifically, if s ∈ S and fR,Z(s) = true then s is excluded from S[R,Z]; s is excluded
exactly when s contains an atom pv

j with fR,Z(pv
j ) = true. If s ∈ S and fR,Z(s) is false or

undefined, then any atom pv
j in s with fR,Z(pv

j ) = false is deleted from s and what is left of s
is put in S[R, Z]. Such deleted atoms must have j ∈ Z. More formally, S[R,Z] is defined by:

S[R,Z] =
{

s \ {pv
j | j ∈ Z, v ∈ Aj}

∣∣∣ s ∈ S and fR,Z(s) 6= true
}

.

Example III.4 Let S = EC, R = RC, and Z = ZC = {age, driver}. Then

EC[RC,ZC] = {p11
grade ∨ p12

grade , p1
grade ∨ · · · ∨ p6

grade} .

Note that EC[RC,ZC] is unsatisfiable, that is, there is no truth function that takes the
value true for both clauses in EC[RC,ZC].

28. The set S[R,Z] can contain the empty clause �. This happens if there is an s in S
with fR,Z(s) = false - that is, every atom pv

j in s has fR,Z(pv
j ) = false. In this case all the

atoms are deleted from s, leaving the empty clause.

Example III.5 Let S = DFH(EC) = EC ∪ {C3}, R = RC, and Z = ZC. Then

(DFH(EC))[RC,ZC] = {p11
grade ∨ p12

grade , p1
grade ∨ · · · ∨ p6

grade , �} .

29. We can now use certain reduced sets of clauses to give a logical formalisation of the
concepts ‘covering set’ and ‘yields a correction’, in the following lemmas.

Lemma III.1 (Formalisation of ‘covering set’) The field set C is a covering set of the
edit set X(S, R) (= the edits of S failed by R) if and only if � /∈ S[R,C], where C is the
complement of C.

Proof in summary: C is not a covering set ⇔ there is an edit in S failed by R and which
does not involve C ⇔ � ∈ S[R,C].

2Note that in another paper [1], we used a different notation. Instead of S[R, Z], we used S[Ri | i /∈ Z] .

7



Example III.6 The set CC = {grade} is a covering set of X(EC, RC). Since CC = ZC,
from Example III.4, � 6∈ EC[RC,CC].

Lemma III.2 (Formalisation of ‘yields a correction’) The field set C yields a
correction of the record R for the edit set S if and only if there is some truth function which
assigns all clauses in S[R,C] to true (or more briefly ‘if and only if S[R,C] is satisfiable’).

Proof in summary: C yields a correction R′ of R for S ⇔ fR′,C satisfies S[R,C].

Example III.7 As seen in Example II.6, the set CC does not yield a correction of RC for
EC. From Example III.4, EC[RC,CC] is not satisfiable.

30. Using Lemmas (III.1) and (III.2) we can formalise ‘covering set correctible’:

Proposition III.1 (Formalisation of ‘covering set correctible’) The deduction
function D is covering set correctible if and only if the following statement holds: For each
edit set E, field set Z, and record R

� /∈ (D(E))[R,Z] ⇔ E[R,Z] is satisfiable.

Proof in summary: use the lemmas, and C = Z = covering set of X(D(E), R) .

Example III.8 Let D be the identity function I, which is not covering set correctible. For
example, let Z = ZC = CC. Then from Example III.4, � 6∈ (I(E))[RC,ZC], but
EC[RC,ZC] is unsatisfiable.

31. Using the lemmas, the error correction guarantee (ECG), defined in paragraph 18(i),
can be seen to be the forward direction of the condition in Proposition III.1, that is:

� /∈ (D(E))[R, Z] ⇒ E[R,Z] is satisfiable.

The ECG is a strengthening of refutation completeness, which is the following property of
D. For each edit set E,

� 6∈ D(E) ⇒ E is satisfiable.

To say that D has refutation completeness is to say that the absence of � in D(E)
guarantees that some record satisfies E. This is in parallel with the ECG: to say that D
has the ECG is to say that the absence of � in (D(E))[R,Z] guarantees that a particular
type of record satisfies E, namely some record obtained by changing R on at most Z.

32. Using the lemmas, error correction totality (ECT), defined in paragraph 18(ii), can
be seen to be the backward direction of the condition in Proposition III.1, that is:

E[R,Z] is satisfiable ⇒ � /∈ (D(E))[R,Z].

ECT is a strengthening of soundness, which is the following property of D. For each edit
set E,

E is satisfiable ⇒ � 6∈ D(E).

To say that D is sound is to say that D(E) can be used to find every E that has a
satisfying record. This is in parallel with ECT: to say that D has ECT is to say that
(D(E))[R,Z] can be used to find every E that has a satisfying record of a particular type,
namely a record obtained by changing R on at most Z.

8



33. What does the above mean? It characterises the underlying properties that a
deduction function must have if it is to be covering set correctible. The underlying property
is systematically stronger than refutation completeness and soundness. These two latter
properties underpin many automated logic tools. The corresponding properties, ECG and
ECT, expressed in terms of the logical formalisation, would underpin any modification for
error localisation of the logical tools.

34. We now explore ECG and ECT for arithmetic edits.

IV Formalisation of covering set correctible for arithmetic
edits

35. Our formalisation of covering sets for arithmetic edits follows the same steps as for
categorical edits. We formalise edits, records, satisfaction relation, deduction, covering sets
and correction. We find, as for categorical edits, that ‘covering set correctible’ is a
strengthening of refutation completeness and soundness.

36. The general form of an arithmetic edit is

N∑
j=1

ajxj ≥ b, where aj , b ∈ R .

37. Each record R is represented as an N -tuple (R1, . . . , RN ) of reals. The record R
satisfies the edit

∑N
j=1 ajxj ≥ b when

∑N
j=1 ajRj ≥ b .

38. If the edit
∑N

j=1 ajxj ≥ b has aj = 0 for all j and has b ∈ R+ (the positive reals),
then the edit simplifies to 0 ≥ b with b ∈ R+. Since no record satisfies this edit, we write it
as �, the equivalence class of edits failed by all records.

39. An example of a deduction function is DFM. We define DFM as follows. First write
the edit set E as Ax ≥ b, where x is an N -dimensional column vector and each component
of Ax ≥ b represents one edit. Then define DFM(E) to be the set of those non-negative
linear combinations of the edits of E where at least one variable is eliminated. That is,
DFM(E) is a set of edits of the form yTAx ≥ yTb. De Waal [7, page 47] explains why DFM

is covering set correctible.

Example IV.1 DFM(EA) = {A1, A2, A3}.

40. In order to formalise ‘covering set correctible’, we construct a set via the analogue,
for inequalities, of the DPLL splitting rule. Given an edit set S, a record R and a field set
Z, we define S[R,Z] to be the set of edits of the form∑

j 6∈Z ajxj ≥ b−
∑

j∈Z ajRj

where the inequality
∑N

j=1 ajxj ≥ b is an edit in S.

Example IV.2 Let ZA = {field 2, field 3}. Then EA[RA,ZA] = {−2x1 ≥ 0, x1 ≥ 3} and
(DFM(EA))[RA,ZA] = {−2x1 ≥ 0, x1 ≥ 3, �}. Note that both edit sets are unsatisfiable.

9



41. With these definitions, the lemmas and the proposition of Section III.4 hold also for
arithmetic edits. This means that the property ‘covering set correctible’ for arithmetic edits
is a strengthening of refutation completeness and soundness, just as it is for categorical
edits. It is interesting that the underlying reason for the success of the Fourier-Motzkin
method for solving inequalities can be seen as Farkas’ Lemma, which is equivalent to
refutation completeness and soundness.

Example IV.3 The deduction function DFM is covering set correctible. By way of an
example supporting the lemmas and proposition, consider the field set ZA = {field 1}. The
set ZA does not cover X(DFM(EA), RA), nor does it yield a correction of RA for EA. By
the lemmas, this last sentence is equivalent to (i) � ∈ (DFM(EA))[RA,ZA], and (ii)
EA[RA,ZA] is unsatisfiable, supporting the condition of the proposition.

V Parallel with SAT

42. Propositional satisfiability (known as SAT) is the problem of deciding whether a
given set of clauses is satisfiable. The error localisation problem is an extension of SAT:
rather than just deciding whether a set of edits and axioms is satisfiable, we seek to decide
whether each field set C yields a correction to the record.

43. Just as the error localisation problem and the SAT problem are related, so are their
solutions. Just as the error localisation problem can be solved by a full deduction method,
so can the SAT problem. An example of a full deduction solution for SAT is directional
resolution, described in Dechter [8].

44. Not only are the solutions to the two problems related, but so are the reasons that
the solutions succeed. The covering set method succeeds exactly when the deduction
function has the properties ECG and ECT. These properties are strengthenings of
refutation completeness and soundness - exactly the properties causing the directional
resolution method for SAT to succeed. Table 1 summarises these relationships.

Table 1: Parallels between error localisation and satisfiability

Problem Error Localisation Satisfiability
Solution Method covering set method directional resolution
Property needed covering set refutation completeness
for method to correctibility and soundness
find solution

45. Both SAT and error localisation have other more common methods of solution than
the full deduction methods. Both are more commonly solved using a combination of search
and deduction. The search methods of SAT include the procedure of Davis, Putnam,
Logemann and Loveland [5]. The search methods of error localisation include cutting plane
techniques, and branch and bound techniques (Garfinkel, Kunnathur, Liepins [11], Ragsdale
and McKeown [13], de Waal [7]). It seems likely that there will be parallels between the
search techniques for error localisation and the search techniques for SAT, which could shed
light on both problems.

10



VI Conclusion

46. This paper has presented the beginnings of a theoretical logical framework for
analysing the error localisation problem. The main aspects are listed below.

(a) The generation of new edits can be seen as logical deduction, where information
implicit in a set of edits is extracted as conclusions.

(b) The covering set method for error localisation is successful exactly when the
deduction function has covering set correctibility, which is a strengthening of
refutation completeness and soundness.

(c) The error localisation problem is a strengthening of the satisfiability problem.

(d) The directional resolution method of solving the satisfiability problem depends
on refutation completeness and soundness in just the same way as the covering
set method of solving the error localisation problem depends on covering set
correctibility. Table 1 displays these parallels.

(e) The same results hold for categorical and arithmetic edits.

47. Logic gives two benefits. Firstly, it gives an alternative way of analysing the problem
and thus potentially gives new insights as in points (a) to (e) above. Secondly, its collection
of sophisticated automated tools could potentially be modified to use covering set
correctibility for solving error localisation problems.

References

[1] Agnes Boskovitz and Rajeev Goré. Automatic data editing: a framework from logic. In
55th Session of the International Statistical Institute, 5–12 April 2005.

[2] Agnes Boskovitz, Rajeev Goré, and Markus Hegland. A logical formalisation of the
Fellegi-Holt method of data cleaning. In Michael R. Berthold et al, editors, Advances
in Intelligent Data Analysis, IDA 2003, volume 2810 of Lecture Notes in Computer
Science, pages 554–565. Springer-Verlag, August 2003.

[3] Renato Bruni and Antonio Sassano. Errors detection and correction in large scale data
collecting. In Frank Hoffmann et al, editors, Advances in Intelligent Data Analysis,
IDA 2001, volume 2189 of Lecture Notes in Computer Science, pages 84–94.
Springer-Verlag, September 2001.

[4] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic logic and mechanical theorem
proving. Academic Press, 1973.

[5] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

[6] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the Association for Computing Machinery, 7(3):201–215, July 1960.

[7] Ton de Waal. Processing of Erroneous and Unsafe Data. PhD thesis, Erasmus
University, Erasmus Research Institute of Management (ERIM), Rotterdam, 2003.

11



[8] Rina Dechter and Irina Rish. Directional resolution: The Davis-Putnam Procedure,
revisited. In J. Doyle et al, editors, Principles of Knowledge Representation and
Reasoning, KR’94, pages 134–145. Kaufmann, 1994.

[9] I. P. Fellegi and D. Holt. A systematic approach to automatic edit and imputation.
Journal of the American Statistical Association, 71(353):17–35, March 1976.

[10] Jean Baptiste Joseph Fourier. Solution d’une question particulière du calcul des
inégalités. In Oeuvres II. Publiés en 1888-90 par les soins de G. Darboux sous les
auspices du Ministère de l’instruction publique, Paris, 1826.

[11] R. S. Garfinkel, A. S. Kunnathur, and G. E. Liepins. Optimal imputation of erroneous
data: Categorical data, general edits. Operations Research, 34(5):744–751, Sep.–Oct.
1986.

[12] T. S. Motzkin, H. Raffa, G. L. Thompson, and R. M. Thrall. The double description
method. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of
Games, volume II, pages 51–73. Princeton University Press, 1953.

[13] Cliff T. Ragsdale and Patrick G. McKeown. On solving the continuous data editing
problem. Computers & Operations Research, 23(3), 263–273 1996.

[14] A. Tarski. Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Oxford
University Press, 1956.

[15] William E. Winkler. Editing discrete data. Statistical Research Report Series,
RR97/04, U.S. Bureau of the Census, 1997.

12


