

Evaluating Smart Cities' Sustainability: Smartainability

A. Temporelli, P. Girardi

Forum on Shaping smarter and more sustainable cities: striving for sustainable development goals

Roma, May the 19th 2016

Smartainability

Summary

What is Smartainability?

New original methodology to evaluate benefits generated by the implementation of innovative technologies within smart cities.

Benefits quantification is realized considering the difference between the performances of innovative technologies and traditional ones.

Smartainability allows to assess technological solutions enabling "smart" functionalities which improve environmental, economical and social conditions within urban districts or whole cities.

Smart Grids assessment

Smart Cities ranking

Assets-Functionalities-Benefits-KPIs Matrix

ASSETS	FUNCTIONALITIES			
	Functionality 1	Functionality 2	Functionality n	
Asset 1	*		*	
Asset 2	*	*		
Asset n	*		*	

BENEFITS	KEY PERFORMANCE INDICATORS - KPI			
	Environment	Economy	Energy	Living
Benefit 1	*	*		
Benefit 2		*	*	*
Benefit n			*	

Life Cycle Perspective

Case study: Expo Milano 2015

Goal of the analysis

Assess with quali-quantitative indicators the sustainability of innovative technologies, enabling smart functionalities, deployed within the Expo Milano 2015 Digital Smart City

Case study: Expo Milano 2015

Overall results

Dimension	КРІ	U.M.	Energy distribution network and Lighting system	Telecommunication network and Telepresence	Mobility
Environment	Greenhouse Gases	t CO ₂ -Eq	-20761	-702	-132
	Acid Gases NOx	t NOx	-34.31	-1.67	-1.76E-01
	Acid Gases SO ₂	t SO ₂	-60.29	-1.77	-2.60E-01
	Particulate PM10	t PM10	-5.19	-0.14	-1.11E-02
	Particulate PM2.5	t PM2.5	-3.92	-0.11	-1.73E-02
Economy	Costs	€	-5425432	-838843	-69651
	Costs variation by energy service suspension	-	-58%		

Case study: Expo Milano 2015

Overall results

Dimension	КРІ	U.M.	Energy distribution network and Lighting system	Telecommunication network and Telepresence	Mobility
Energy	Energy used	MWh	-28580 ÷ -36580	-836	
	Primary fossil energy used	MWh			-1488
	Renewable energy used	%	+5%		+798%
	Service suspension number	-	-25%		
	Service suspension duration	-	-45%		
	Saved time	-		High	+3.3%
	Information points	-		High	
	Foiled cybernetic attaches	-		High	
Living	Simultaneously connected users	-		High	
	Services and applications availability	-		High	
	Effectiveness decisions growth	-		+9.7%	
	Exposure index	-		High	
	Customer engagement	-			High
	Driving stress level	-			Low

Guidelines

What's inside

Methodology consolidation in guidelines to repeat the assessment in other «real» case study

Definition of the main terms of the analysis

Identification of further analysis dimensions

Creation of a set of suggested indicators

Detailed description of all the steps of the analysis

UNECE-ITU and Smartainability

Opportunity of integration

Conclusions

Smartainability features

Quantitative indicators consolidated in guidelines

Thank you for your attention

"Smartainability® is a project financed by the Italian fund "Ricerca per il Sistema Elettrico Nazionale", decree of Italian Economic Development Ministry November 9th 2012 and following"

Next steps

Sharing Cities project – SHAR-LLM

ENERGY

 Public and private buildings energy retrofitting

MOBILITY

- E-car sharing
- E-bike sharing
- E-Log
- Smart Parking

ICT

- Data collection
- Data analysis

Strength and weakness points

Ex-ante evaluations

Indicators evaluate benefits, not functionalities/assets

Sustainability and smartness combined evaluation

Monitoring/evaluation ex post thanks to KPI

Ricerca sul Sistema Energetico - RSE S.p.A.

Partners provide data without impartiality

KPI assessment based on estimated values and hypothesis

Smart technology features

It's able to communicate, even in both directions (obtain and provide information)

It's checked in remote or provided of local intelligence which allows to adapt to several situations (adaptation)

It predicts market tendency waiting for economies of scale

