

Transboundary River Basins & Assessment

Hartwig Kremer UN Environment – Maija Bertule, UNEP-DHI Partnership

Cultural Organization

United Nations Intergovernmen
Educational, Scientific and Cultural Organization Commission

Assessment Scope

286 Transboundary River Basins – 796 Basin Country Units (BCUs)
/+26 selected deltas/

Develop a simple, scalable methodology

Use existing information and modelling

Use of composite indicators

Transboundary River Basin Indicators

THEMATIC GROUP	INDICATOR						
Baseline Transbound	dary Status (2010)	Projected Transboundary Stress (2030/2050)					
Water Quantity	 Environmental water stress Human water stress Agricultural water stress 	Environmental water stress Human water stress					
Water Quality	Nutrient pollution Wastewater pollution	3. Nutrient pollution					
Ecosystems	 Wetland disconnectivity Ecosystem impacts from dams Threat to fish Extinction risk 	[Environmental water stress]					
Governance	10. Legal framework11. Hydropolitical tension12. Enabling environment	Exacerbating factors to hydropolitical tension					
Socioeconomics	13. Economic dependence on water resources14. Societal wellbeing15. Exposure to floods and droughts	5. Change in population density					
Water Systems Links							
Lakes	1. Lake influence						
Coastal areas	Delta vulnerability (sea level rise, wetlands, population and governance)						

Relative Risk Categories

Raw indicator values -> Relative risk categories

- Global comparative assessment
- Comparability across indicators
- Scorecards for individual basins (Factsheets)

Tigris-Euphrates/Shattal

Relative Risk Category				
1 Very low				
2 Low				
3 Moderate				
4 High				
5 Very high				

I-E	D	4		2	4	-	7	_	40	44	40	40	4.4	A
pulation	Runoff (km ³)	1	2	3	4	5	1	8	10	11	12	13	14	Av
oulation	Runoff [km³]	Environmental Water Stress	Human Water Stress	Agricultural Water Stress	Nutrient Pollution	Urban Water Pollution	Ecosystem impacts of dams	Threat to Fish	Institutional Resilience	Enabling Environment	Economic Dependency on Water Resources	Societal Well-being	vuinerability to Climate-related Natural Disasters	
0,498,008	270,498,008	1.00	1.00	0.96	0.50	0.69	0.80	0.66	0.41	0.64	0.44	80.0	1.00	0.68
89,570	6,289,570	0.63	0.80	0.86	0.75	0.63	0.64	0.69	0.64		0.47	0.56	0.57	0.66
505,570	10,505,570	0.38	0.79	0.72	0.50	0.61	1.00	0.82	0.25	0.26	0.81	0.89	0.49	0.63
148,620	17,148,620	0.50	0.86	0.94	0.50	0.63	0.77	0.66	0.59	0.73	0.23	0.34	0.64	0.62
26,820	4,126,820	0.38	0.76	0.71	0.50	0.66	0.84	0.59	0.50	0.90	0.49	0.57	0.46	0.61
54,230	2,954,230	0.50	0.76	0.85	0.50	0.63	0.83	0.70	0.75	0.36	0.25	0.63	0.58	0.61
87,560	3,987,560	0.38	0.80	0.74	0.50	0.63	0.96	0.56	0.53		0.48	0.66	0.50	0.61
		0.50	0.02	Λ 07	0.25	0.61	0.07	0.60	0.22		0.01	0 22	0.52	0.61

Example: Basin level

Example: BCU level

Example: Baseline

Example: Projected change

Example: Deltas

4 projected 'hot-spots'

Interactive results & data portal

Transboundary Waters Assessment Programme

- (n) e
- ✓ On-demand assessment results maps: basin, BCU, deltas level
- ✓ Background layers (River basins map, deltas map, etc.)
- √ Results summaries
- ✓ User defined indices
- ✓ River basin factsheets
- ✓ Results files and metadata sheets

Key findings – Lessons learned

- Process: considerable time and effort in harmonizing the existing global datasets, creating an updated/better resolution delineation of the global transboundary river basins (286), features efforts needed to harmonize and utilize global datasets.
- Indicators: valuable in making global comparison, given the vast difference in data available on local scales;
- challenging not only the lack of data in many basins, but also the lack of agreed thresholds for many indicators (see SDGs).
- Uptake in decision-making: too early to evaluate that, but current work is aiming to apply TWAP data in a new WB study in relation to infrastructure development.
- TWAP RB data portal has close to 800 downloads (about half of that basin factsheets),
- Integration with other water systems: indeed a challenge, but a lot of the groundwork enables better integration in future. Particularly updating the delineations of the water bodies to avoid overlap of relevant water bodies.

Key findings – outlook

- river basin component top-down approach globally available data the only way to cover all 288 TB river basins.
- bottom-up approach with stakeholder inclusion would have favoured basins with existing structures and data and left those basins behind most in need of basic data.
- the river basin component links to the lakes component and the coastal component (incl. deltas). groundwater component would be next to connect more closely (see also GEMS and WWQA).
- TWAP could contribute to the UNECE 3rd assessment update the different indicators - the baseline year was typically 2010 (older for some indicators) and it may be relevant to update to 2015

Thank you

Maija Bertule, <u>mabe@dhigroup.com</u>
Hartwig Kremer, <u>hartwig.kremer@unenvironment.org</u>

http://twap-rivers.org/