

Economic and Social Council

Distr. GENERAL

ECE/EB.AIR/WG.5/2009/20 16 June 2009

Original: ENGLISH

ECONOMIC COMMISSION FOR EUROPE

EXECUTIVE BODY FOR THE CONVENTION ON LONG-RANGE TRANSBOUNDARY AIR POLLUTION

Working Group on Strategies and Review

Forty-fifth session Geneva, 31 August–4 September 2009 Item 4 of the provisional agenda

OPTIONS FOR REVISING THE GOTHENBURG PROTOCOL

DRAFT REVISED TECHNICAL ANNEX VIII

Note by the secretariat

Summary

At its forty-fourth session in April 2009, the Working Group on Strategies and Review welcomed the work carried out by the Expert Group on Techno-economic issues on updating the technical annexes IV, V, VI and VIII and the guidance documents and on elaborating new annexes on volatile organic compounds (VOC) in products and on particulate matter (PM). It requested the secretariat to submit them as official documents for negotiation at the forty-fifth session of the Working Group (ECE/EB.AIR/WG.5/96, para. 42 (d–e)). This note presents a draft revised technical annex VIII as suggested by the Expert Group on Techno-economic Issues.

GE.09-22262

Annex VIII

LIMIT VALUES FOR FUELS AND NEW MOBILE SOURCES

Section A applies to Parties other than Canada and the United States of America, section B applies to Canada and section C applies to the United States of America.

1. The annex contains limit values for NOx, expressed as nitrogen dioxide (NO₂) equivalents, for hydrocarbons, most of which are volatile organic compounds, for carbon monoxide (CO) and for dust¹ as well as environmental specifications for marketed fuels for vehicles.

2. The timescales for applying the limit values in this annex are laid down in <u>annex [X]</u>.

A. <u>Parties other than Canada and the United States of America</u>

Passenger cars and light-duty vehicles

3. Limit values for power-driven vehicles with at least four wheels and used for the carriage of passengers (category M) and goods (category N) are given in table 1. They are based on the European regulations Euro 3 to Euro 6.

Heavy-duty vehicles

4. Limit values for engines for heavy-duty vehicles are given in tables 2 and 3 depending on the applicable test procedures.

Compression-ignition (CI) and spark-ignition (SI) non-road vehicles and machines

5. Limit values for agricultural and forestry tractors and other non-road vehicle/machine engines are listed in tables 4 to 8.

Stages I and II for CI engines to be installed on non-road mobile machines are based on Directive 1997/68/EC. Stages I and II for CI engines intended to power agricultural and forestry tractors are based on Directive 2000/25/EC. Stages IIIA to IV for CI engines are based on

¹ In the context of this Protocol, dust and TSP have the same meaning. In the following tables, the terms Particulate Matter or Particulates are used to keep the coherence with the EC directives used.

Directive 2004/26/EC. Stages IIIA to IV for engines intended to power agricultural and forestry tractors are based on Directive 2005/13/EC.

Stages I and II for SI engines to be installed on non-road mobile machines are based on Directive 2002/88/EC.

Locomotives and railcars

6. Limit values for locomotives and railcars are listed in tables 9 to 12. Stages IIIA and IIIB are based on Directive 2004/26/EC.

Inland waterway vessels

7. Limit values for inland waterway vessels are listed in table 13. Stage IIIA is based on Directive 2004/26/EC.

Recreational crafts

8. Limit values for inland waterway vessels are listed in table 14. Stage IIIA is based on Directive 2003/44/EC.

Motorcycles and mopeds

9. Limit values for motorcycles and mopeds are given in tables 15 to 18. They are based on the European regulation.

Fuel quality

10. Environmental quality specifications for petrol and diesel are given in tables 19 to 20.

]			Reference mass		Limit values										
			(RW) (kg)	Car mone	bon oxide	Hydroc (H	carbons C)	NM	VOC	Nitro oxi	ogen des	Hydroc and ni oxi comb	carbons trogen des bined	Particu	ılates ^{a/}
				L1 (g	g/km)	L2 (g	g/km)	L3 (g	/km)	L4 (g	/km)	L2 + L4	(g/km)	L5 (g	g/km)
Cat	egory	Class		Petrol	Diesel	Petrol	Diesel	Petrol	Diesel	Petrol	Diesel	Petrol	Diesel	Petrol	Diesel
~	M ^{b/}		All	2.3	0.64	0.20	-	-	-	0.15	0.50	-	0.56	-	0.05
0.3	$N_1 c^{\prime}$	Ι	$RW \leq 1305$	2.3	0.64	0.20	-	-	-	0.15	0.50	-	0.56	-	0.05
Euı		II	$1305 < RW \le 1760$	4.17	0.80	0.25	-	-	-	0.18	0.65	-	0.72	-	0.07
		III	1760 < RW	5.22	0.95	0.29	-	-	-	0.21	0.78	-	0.86	-	0.10
-	M ^{b/}		All	1.0	0.50	0.10	-	-	-	0.08	0.25	-	0.30	-	0.025
0.4	$N_1 c^{\prime}$	Ι	RW 1305	1.0	0.50	0.10	-	-	-	0.08	0.25	-	0.30	-	0.025
Eur		II	$1305 < RW \le 1760$	1.81	0.63	0.13	-	-	-	0.10	0.33	-	0.39	-	0.04
		III	1760 < RW	2.27	0.74	0.16	-	-	-	0.11	0.39	-	0.46	-	0.06
	M ^{b/}		All	1.0	0.50	0.10	-	0.068	-	0.06	0.18	-	0.23	0.005	0.005
5	$N_1^{c/}$	Ι	RW 1305	1.0	0.50	0.10	-	0.068	-	0.06	0.18	-	0.23	0.005	0.005
uro		II	$1305 < RW \le 1760$	1.81	0.63	0.13	-	0.090	-	0.075	0.235	-	0.295	0.005	0.005
Ē		III	1760 < RW	2.27	0.74	0.16	-	0.108	-	0.082	0.28	-	0.35	0.005	0.005
	N ₂			2.27	0.74	0.16	-	0.108	-	0.082	0.28	-	0.35	0.005	0.005
6	M ^{b/}		All	1.0	0.50	0.10	-	0.068	-	0.06	0.08	-	0.17	0.005	0.005
	$N_1 c^{\prime}$	Ι	$RW \leq 1305$	1.0	0.50	0.10	-	0.068	-	0.06	0.08	-	0.17	0.005	0.005
uro		II	$1305 < RW \le 1760$	1.81	0.63	0.13	-	0.090	-	0.075	0.105	-	0.195	0.005	0.005
Ē		III	1760 < RW	2.27	0.74	0.16	-	0.108	-	0.082	0.125	-	0.215	0.005	0.005
	N_2			2.27	0.74	0.16	-	0.108	-	0.082	0.125	-	0.215	0.005	0.005

Table 1: Limit values for passenger cars and light-duty vehicles

a/ VLE expressed as a number of particulates /km are also defined for Euro 6

b/ Except vehicles whose maximum mass exceeds 2,500 kg.

c/ And those category M vehicles specified in note b.

Row	Carbon monoxide (g/kWh)	Hydrocarbons (g/kWh)	Nitrogen oxides (g/kWh)	Particulates (g/kWh)	Smoke (m ⁻¹)
А	2.1	0.66	5.0	0.10 / 0.13 ^{a/}	0.8
B1	1.5	0.46	3.5	0.02	0.5
B2	1.5	0.46	2.0	0.02	0.5

 Table 2: Limit values for heavy-duty vehicles - European steady-state cycle (ESC) and European load-response (ELR) tests

a/ For engines with a swept volume below 0.75 dm3 per cylinder and a rated power speed above 3,000 revolutions per minute.

 Table 3: Limit values for heavy-duty vehicles - European transient cycle (ETC) test

Row	Carbon monoxide (g/kWh)	Non-methane hydrocarbons (g/kWh)	Methane ^{a/} (g/kWh)	Nitrogen oxides (g/kWh)	Particulates ^{b/}
A (2000)	5.45	0.78	1.6	5.0	0.16 / 0.21 ^{c/}
B1 (2005)	4.0	0.55	1.1	3.5	0.03
B2 (2008)	4.0	0.55	1.1	2.0	0.03

a/ For natural gas engines only.

b/ Not applicable to gas-fuelled engines at stage A and stages B1 and B2.

c/ For engines with a swept volume below 0.75 dm^3 per cylinder and a rated power speed above 3,000 revolutions per minute.

Table 4: Limit values (stage IIIA) for diesel engines for non-road mobile machines, agricultural and forestry tractors

Net power (P) (kW)	Carbon monoxide (g/kWh)	Sum of hydrocarbons and oxides of nitrogen (g/kWh)	Particulate matter (g/kWh)
$130 \le P \le 560$	3.5	4.0	0.2
$75 \le P < 130$	5.0	4.0	0.3
$37 \le P < 75$	5.0	4.7	0.4
$19 \le P < 37$	5.5	7.5	0.6

Table 5: Limit values (stage IIIB) for diesel engines for non-road mobile machines, agricultural and forestry tractors

Net power (P) (kW)	Carbon monoxide (g/kWh)	Hydrocarbons (g/kWh)	Nitrogen oxides (g/kWh)	Particulate matter (g/kWh)
$130 \le P \le 560$	3.5	0.19	2.0	0.025
$75 \le P < 130$	5.0	0.19	3.3	0.025
$56 \le P < 75$	5.0	0.19	3.3	0.025
$37 \le P < 56$	5.0	4.7		0.025

Table	6:	Limit	values	(stage	IV)	for	diesel	engines	for	non-road	mobile	machines,
agricu	ltur	al and	forestry	tractor	rs							

Net power (P) (kW)	Carbon monoxide (g/kWh)	Hydrocarbons (g/kWh)	Nitrogen oxides (g/kWh)	Particulate matter (g/kWh)
$130 \le P \le 560$	3.5	0.19	0.4	0.025
$56 \le P < 130$	5.0	0.19	0.4	0.025

	Table 7: Limit values	(stage I) for spark-	-ignition engines for non-roa	d mobile machines
--	-----------------------	----------------------	-------------------------------	-------------------

Hand-held engines							
Displacement	Carbon monoxide	Hydrocarbons	Nitrogen oxides				
(cm ³)	(g/kWh)	(g/kWh)	(g/kWh)				
Disp < 20	805	295	5.36				
$20 \le \text{disp.} < 50$	805	241	5.36				
$Disp \ge 50$	603	161	5.36				
	Non-hand-hel	d engines					
Displacement	Carbon monoxide	Sum of hydro	ocarbons				
(cm ³)	(g/kWh)	and oxides of nitro	ogen (g/kWh)				
Disp < 66	519	50					
$66 \le \text{disp.} < 100$	519	40					
$100 \le \text{disp.} < 225$	519	16.1					
Disp≥225 519 13.4							

Table 8: Limit values (stage II) for spark-ignition engines for non-road mobile machines

Hand-held engines								
Displacement Carbon monoxide Sum of hydrocarbons								
(cm ³)	(g/kWh)	and oxides of nitrogen (g/kWh) ^{a/}						
Disp < 20	805	50						
$20 \le \text{disp.} < 50$	805	50						
$Disp \ge 50$	603	72						
Non-hand-held engines								
Displacement	Carbon monoxide	Sum of hydrocarbons						
(cm ³)	(g/kWh)	and oxides of nitrogen (g/kWh)						
Disp < 66	519	50						
$66 \le \text{disp.} < 100$	519	40						
$100 \le \text{disp.} < 225$	519	16.1						
$Disp \ge 225$	519	12.4						

a/ The NOx emissions for all engine classes must not exceed 10 g/kWh.

Net power (P) (kW)	power (P) (kW)Carbon monoxide (g/kWh)Sum of hydrocarbons and oxides of nitrogen (g/kWh)			Particulate matter (g/kWh)
$\begin{array}{c} \text{RL A:} \\ 130 \leq \text{P} \leq 560 \end{array}$	RL A: 3.5 4.0 $\leq P \leq 560$ 4.0			
Net power (P) (kW)	et power (P) Carbon monoxide Hydrocarbons Nitrogen oxides (kW) (g/kWh) (g/kWh) (g/kWh)		Particulate matter (g/kWh)	
RH A: P > 560	3.5	0.4	6.0	0.2
RH A: Engines with P > 2,000 and disp. > 5 l/cylinder	3.5	0.4	7.4	0.2

 Table 9: Limit values (stage IIIA) for propulsion of locomotives

Table 10: Limit values (stage IIIA) for propulsion of railcars

Net power (P) (kW)	Carbon monoxide	Sum of hydrocarbons	Particulate
	(g/kWh)	and oxides of nitrogen (g/kWh)	matter
RCA: 130 < P	3.5	4.0	0.2

Table 11: Limit values (stage IIIB) for propulsion of railcars

Net power (P) (kW)	Carbon monoxide (g/kWh)	Hydrocarbons (g/kWh)	Nitrogen oxides (g/kWh)	Particulate matter
				(g/kWh)
RCA: 130 < P	3.5	0.19	2.0	0.025

Table 12: Limit values (stage IIIB) for propulsion of locomotives

Net power (P) (kW)	Carbon monoxide	Sum of hydrocarbons	Particulate
	(g/kWh)	and oxides of nitrogen (g/kWh)	matter
			(g/kWh)
RCA: 130 < P	3.5	4.0	0.025

Table 13: Limit values (stage IIIA) for propulsion of inland waterways vessels

Displacement (liters per cylinder/kW)	Carbon monoxide (g/kWh)	Sum of hydrocarbons and oxides of nitrogen (g/kWh)	Particulate matter (g/kWh)
V1:1 Disp. < 0.9 Power ≥ 37 kW	5.0	7.5	0.4
V1:2 $0.9 \le \text{disp.} < 1.2$	5.0	7.2	0.3
V1:3 $1.2 \le \text{disp.} < 2.5$	5.0	7.2	0.2
V1:4 $2.5 \le \text{disp.} < 5.0$	5.0	7.2	0.2
V2:1 $5.0 \le \text{disp.} < 15$	5.0	7.8	0.27

ECE/EB.AIR/WG.5/2009/20 Page 8

Displacement (liters per cylinder/kW)	Carbon monoxide (g/kWh)	Sum of hydrocarbons and oxides of nitrogen (g/kWh)	Particulate matter (g/kWh)
V2:2 15 ≤ disp. < 20 Power < 3300 kW	5.0	8.7	0.5
V2:3 15 ≤ disp. < 20 Power > 3300 kW	5.0	9.8	0.5
V2:4 20 ≤ disp. < 25	5.0	9.8	0.5
$V2:5\ 25 \le disp. < 30$	5.0	11.0	0.5

Table 14: Limit values for recreational crafts

Engine	C	$CO (g/kWh)$ $CO = A + B/P^{n}{}_{N}$		VOC (g/kWh) VOC = $A + B/P_N^n$		NOx	PM [g/kWb]	
type	Α	В	n	Α	В	n		[g/K WI]
2-stroke	150	600	1	30	100	0,75	10	Not Appl.
4-stroke	150	600	1	6	50	0,75	15	Not Appl.
CI	5	0	0	1,5	2	0,5	9,8	1

Not Appl.: Not Applicable

Where A, B and n are constants in accordance with table 3.1.1, P_N is the rate engine power in kW and the emissions are measured in accordance with the harmonised standards.

Table 15: Limit values	(stage I) for moto	orcycles and 3- and 4	4-wheelers (> 5	0 cm^3 ; > 45 km/h)
------------------------	--------------------	-----------------------	-----------------	-------------------------------

Engine type	Limit values	
	CO = 8 g/km	
2-stroke	HC = 4 g/km	
	$NO_x = 0.1 g/km$	
	CO = 13 g/km	
4-stroke	HC = 3 g/km	
	$NO_x = 0.3 g/km$	

Note: For 3- and 4-wheelers, the limit values have to be multiplied by 1.5.

Table 16: Limit values (stage II) for motorcycles (> 50 cm³; > 45 km/h)

Engine type	Limit values	
Motoravala < 150aa	HC = 1.2 g/km	
Motorcycle < 150cc	$NO_x = 0.3 g/km$	
Motoravela > 150ee	HC = 1.0 g/km	
Wotorcycle > 150cc	$NO_x = 0.3 \text{ g/km}$	

ECE/EB.AIR/WG.5/2009/20 Pag 9

Engine type	Limit values		
Motoravala < 150aa	HC = 0.8 g/km		
Motorcycle < 150cc	$NO_x = 0.15 g/km$		
Motoravala > 150aa	HC = 0.3 g/km		
Motorcycle > 150cc	$NO_x = 0.15 g/km$		

Table 17: Limit values (stage III) for motorcycles (> 50 cm³; > 45 km/h)

Table 18: Limit values for mopeds (50 cm³; < 45 km/h)

Stage	Limit values		
	CO (g/km)	$HC + NO_x (g/km)$	
Ι	6.0 ^{a/}	3.0 ^{a/}	
II	1.0 ^{b/}	1.2	

a/ For 3- and 4-wheelers, multiply by 2.

b/ For 3- and 4-wheelers, 3.5 g/km.

Table 19: Environmental specifications for marketed fuels to be used for vehicles equipped with positive-ignition engines

Type: Petrol

		Limits		
Parameter	Unit	Minimum	Maximum	
Research octane number		95	-	
Motor octane number		85	-	
Reid vapour pressure, summer period ^{a/}	kPa	-	60	
Distillation:				
evaporated at 100°C	% v/v	46	-	
evaporated at 150°C	% v/v	75	-	
Hydrocarbon analysis:				
- olefins	% v/v	-	18.0 ^{b/}	
- aromatics		-	35	
- benzene		-	1	
Oxygen content	% m/m	-	2.7	
Oxygenates:				
- Methanol, stabilizing agents must be added	% v/v	-	3	
- Ethanol, stabilizing	% v/v	-	5	
agents may be necessary				
- Iso-propyl alcohol	% v/v	-	10	
- Tert-butyl alcohol	% v/v	-	7	
- Iso-butyl alcohol	% v/v	-	10	

ECE/EB.AIR/WG.5/2009/20 Page 10

		Limits		
Parameter	Unit	Minimum	Maximum	
- Ethers containing 5 or	% v/v	-	15	
more carbon atoms per				
molecule				
Other oxygenates ^{c/}	% v/v	-	10	
Sulphur content	mg/kg	-	10	

a/ The summer period shall begin no later than 1 May and shall not end before 30 September. For member States with arctic conditions the summer period shall begin no later than 1 June and not end before 31 August and the RVP is limited to 70 kPa.

b/Except for regular unleaded petrol(minimum motor octane number (MON) of 81 and minimum research octane number (RON) of 91), for which the maximum olefin content shall be 21% v/v. These limits shall not preclude the introduction on the market of a member State of another unleaded petrol with lower octane numbers than set out here.

c/ Other mono-alcohols with a final distillation point no higher than the final distillation point laid down in national specifications or, where these do not exist, in industrial specifications for motor fuels.

Table 20: Environmental specifications for marketed fuels to be used for vehicles equipped with compression-ignition engines

Type: Diesel fuel

		Limits	
Parameter	Unit	Minimum	Maximum
Cetane number		51	-
Density at 15°C	kg/m ³	-	845
Distillation point: 95%	°C	-	360
Polycyclic aromatic	% m/m	-	11
hydrocarbons			
Sulphur content	mg/kg	-	10

B. \underline{Canada}^2

11 New vehicle emission standards for light-duty vehicles, light-duty trucks, heavy-duty vehicles, heavy-duty engines and motorcycles: Motor Vehicle Safety Act (and successor legislation), Schedule V of the Motor Vehicle Safety Regulations: Vehicle Emissions (Standard 1100), SOR/97-376, (28 July, 1997), as amended from time to time.

12. Canadian Environmental Protection Act, Diesel Fuel Regulations, SOR/97-110 (4 February, 1997, sulphur in diesel fuel), as amended from time to time.

 $^{^{\}rm 2}$ Up to now, no information has been provided by North America, therefore part B and C of the annex have not been modified yet

13. Canadian Environmental Protection Act, Benzene in Gasoline Regulations, SOR/97-493(6 November, 1997), as amended from time to time.

14. Canadian Environmental Protection Act, Sulphur in Gasoline Regulations, Canada Gazette, Part II, June 4, 1999, as amended from time to time.

C. <u>United States of America 2 </u>

15. Implementation of a mobile source emission control programme for light-duty vehicles, light-duty trucks, heavy-duty trucks and fuels to the extent required by sections 202 (a), 202 (g) and 202 (h) of the Clean Air Act, as implemented through:

(a) 40 Code of Federal Regulations (C.F.R.) Part 80, Subpart D - Reformulated

Gasoline;

(b) 40 C.F.R. Part 86, Subpart A - General Provisions for Emission Regulations;

(c) 40 C.F.R. Part 80, section 80.29 -- Controls and Prohibitions on Diesel Fuel

Quality.
