Project Number & Title: INT2/019

Developing Technology and Management of Sustainable Uranium Extraction

Ulaan Baatar, Mongolia August 16-19th, 2016

Organizer

The International Atomic Energy Agency (IAEA) in collaboration with the Government of Mongolia through the Ministry of Mining, Mongolia

Innovation Case Studies Industry-best-practice ISR

Michael Haschke, Dr., EurGeol.

Manager Innovation & Business Development

DMT GmbH & Co. KG, Essen, Germany

August 16-19th, 2016

Ulaanbaatar, Mongolia

DMT / TÜV Nord Innovation Projects

Mining Technology

- Development of innovative exploration and extraction technologies (upgrade for existing technologies); e.g. ISR of non-uranium resources.
- Currently 45 R&D projects & proposals (as of August 2016).
- Some highlights: Automated mining via smart sensor monitoring,
 Technology in nuclear waste disposal technologies, PG NORM removal
 & land management, smart-seismic shallow target surveying
- EU standardization initiatives.
- 6D-BIM Building Information Modeling (4D=3D+time, 5D=4D+cost, 6D=5D+train schedule).
- Environmental sustainable mining now anchored in company guidelines.

Internationalisation

- Core Partner in EIT Raw Materials initiative
- New branches: *DMT Turkey*, *DMT Middle East*, *DMT Canada*

Global Megatrends

Growing demand in critical technology metals

- Focus on <u>secondary resources</u> and <u>deep mines</u>
- Increasing demand for <u>automated mining</u> and smart sensors (e.g. automated core scanning)
- Certification of resource origin

Changes in energy production

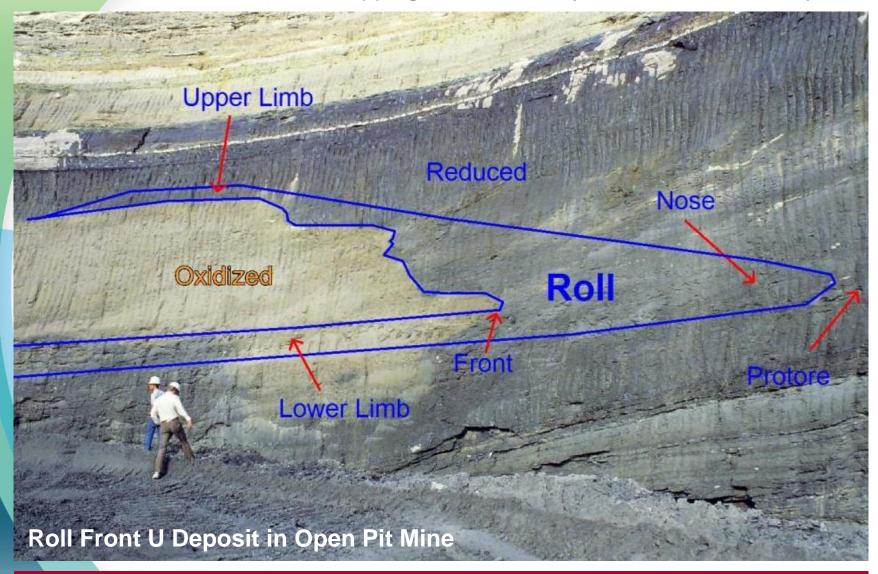
 Increasing demand for automated mining and smart sensors (e.g. automated core scanning)

Increasing Urbanization

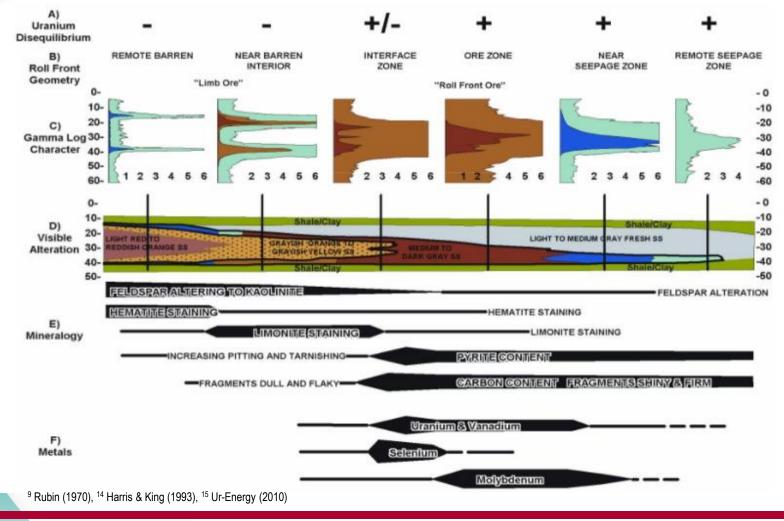
Mining needs to become smart and more sensitive

Best Practice U-ISR Technology Brief History of Uranium Roll-Fronts

Summary of Roll-Front History

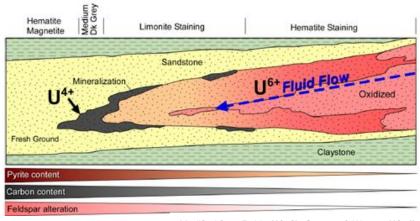

- Gruner (1956) describes the multiple accretion process to concentrate uranium in sediments.
- Harshman (1962) recognizes alteration as a guide to uranium deposits in the Shirley Basin, and published pictures and diagrams of roll fronts being mined in open pit mines at the time.
- Hans Adler (1964) discribes a concept of genesis of "ore-rolls" for sandstone-type uranium deposits.
- Shawe & Granger (1965) summarize "ore-rolls".
- Bruce Rubin (1970) describes roll-front zonation using a diagram that is still widely used today.

Mapping of sedimentary uranium roll-front deposits



Mapping of sedimentary uranium roll-front deposits

Mapping of Basic Roll-Front Characteristics9,14,15



Mapping of sedimentary uranium roll-front deposits

Formation of a Roll-Front System^{9,10}

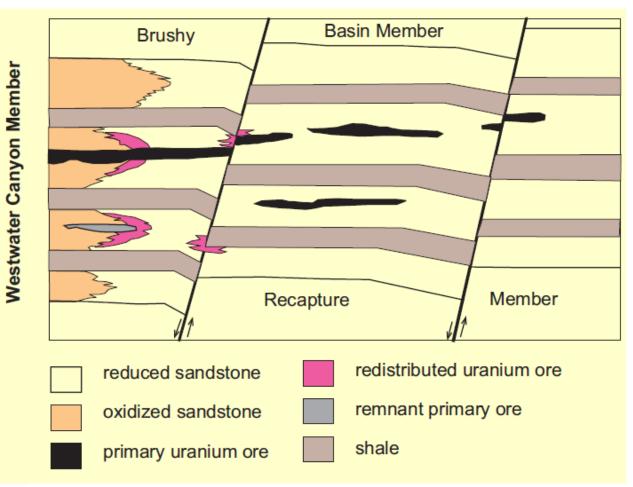
Uranium sources

- Hydrothermal fluids
- Precambrian vein deposits
- Precambrian U-enriched granites and derived arkoses
- Uraniferous volcanic tuffs

Modified from Rubin (1970), Granger & Warren (1974)

- The two latter, individually or in combination, are most likely sources for most roll-front deposits in sandstone.
- Uranium is transported in oxidizing surface and groundwaters.
- Uranium is precipitated at reduction-oxidation (redox) interface.
- Redox interface migrates downdip with continued oxidation and precipitation.

⁹ Rubin (1970), ¹⁰ Granger & Warren (1974)



Mapping of sedimentary uranium roll-front deposits

Multi-stage U Ore Deposit Roll-Front Formation

Multi-stage ore deposit formation: Probably multiple roll-front deposits of different scale⁴.

Remnant primary ore may resemble disrupted roll-front (partially remobilized and redistributed).

⁴ McLemore, V. (2007) Geological controls of uranium recovery of Grants uranium deposits, New Mexico, GSA Denver Annual Meeting, Colorado, Paper No. 92-2.

Mapping of sedimentary uranium roll-front deposits

'Architecture' of (redistributed) roll-front deposits

Sketch of the formation of redistributed sandstone uranium deposits (e.g. New Mexico⁴).

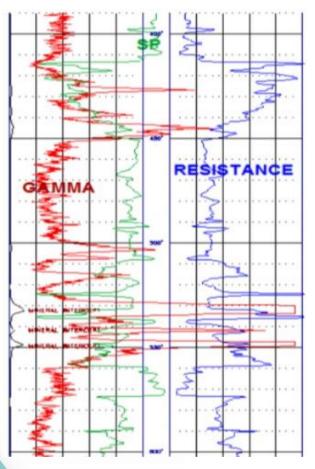
Ground water movement in permeable sandstone Secondary rollfront ore Molybenite, pyrite, Diagenetic U calcite ore lenses (not essential to form Hematite, limonite (magnetite) core roll-front deposit) Sidereite goethite, S Uraninite, pyrite, Se Permeable Oxidized rocks (diagenetic hematite and limonite) Reduced sandstone (diagenetic pyrite, marcasite, 20 to 100 m calcite, organic material)

⁴ McLemore, V. (2007) Geological controls of uranium recovery of Grants uranium deposits, New Mexico, GSA Denver Annual Meeting, Colorado, Paper No. 92-2.

Mapping of sedimentary uranium roll-front deposits

Drilling Exploration for Roll-Fronts/Paleochannels

- Exploration and delineation drilling to locate paleochannels.
- Many U ore deposits are Measured Resources due to the dense exploration drill grid pattern required to identify paleochannel pattern.



Mapping of sedimentary uranium roll-front deposits

Mapping of Uranium Roll-Fronts using Gamma-Resistivity Log Used in Geophysical Logging of Bore Holes¹¹

- Typical ISR logging measures gamma (radioactivity) and electrical conductivity (resistivity in sedimentary formation changes).
- Mineral intercepts are commonly defined as:

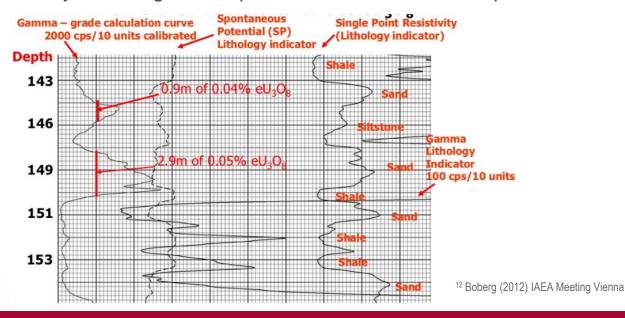
Thickness – Average Grade – Depth / GT (GT = Grade x Thickness)

Example

$$3.1m - 0.12\% \text{ eU}_3\text{O}_8 - 162m / 0.37$$

 $GT = 0.37 (3.1m \times 0.12\%)$

¹¹ Van Holland (2010)

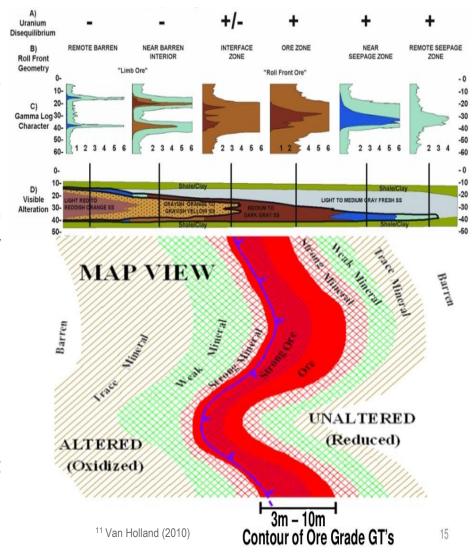

Industry Best Practice U-ISR Technology

Downhole Probe Measurements

Calculation of *Equivalent Uranium* (eU₃O₈)¹²

Downhole probe measures natural gamma radiation released by uranium daughter products (mainly Bismuth 214, not Uranium) which is then used to calculate eU₃O₈

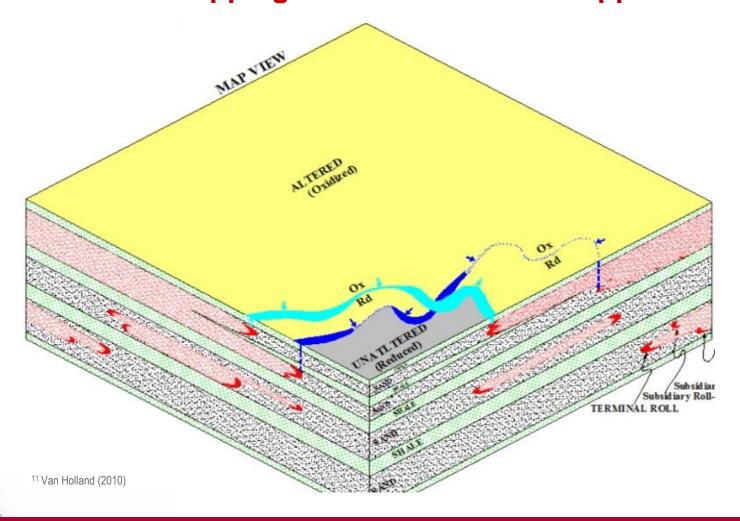
Varying chemical nature of decay products (e.g. Rn is a short-lived gas easily moved by groundwater) results in each decay product being dissolved and moved differentially, resulting in disequilibrium in the uranium deposit.



Mapping of sedimentary uranium roll-front deposits

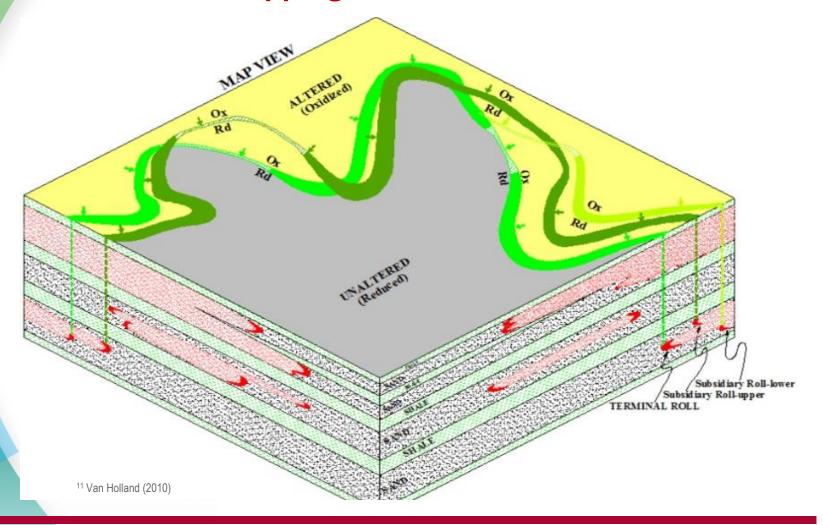
Mapping of a Roll-Front

- Differential gamma log character indicates presence of uranium roll-front.
- Use gamma patterns to reconstruct roll-front geometry (e.g. upper limb, lower limb, nose, protore).
- Correlate drill logs of gamma log patterns to map spatial extension of roll-front.
 - Generate contours of ore grade GT's for roll-front (RedOx) contouring and mapping.



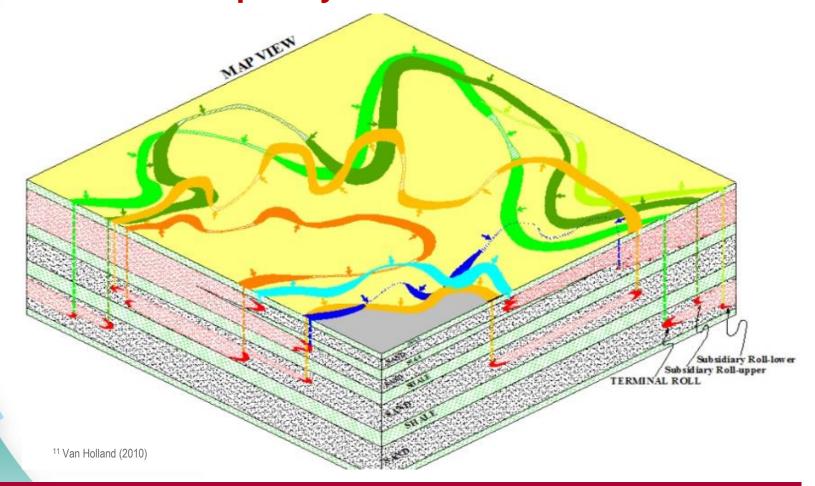
Mapping of sedimentary uranium roll-front deposits

Model-Mapping of Roll-Fronts in an Upper Sand¹¹



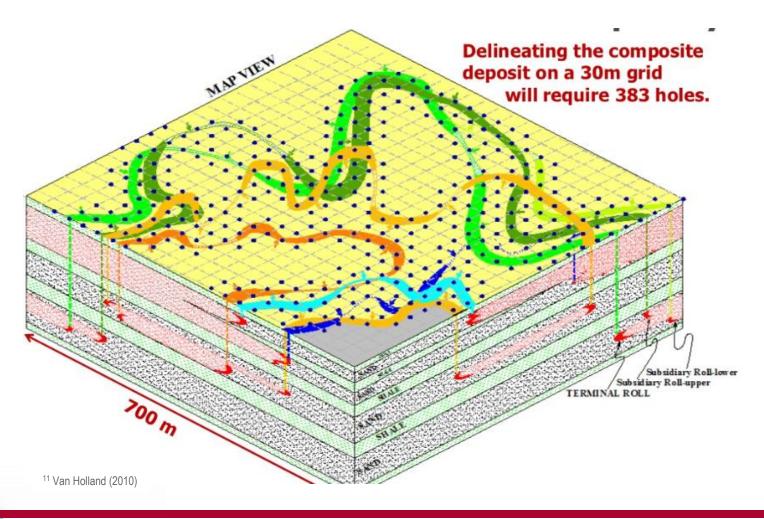
Mapping of sedimentary uranium roll-front deposits

Model-Mapping of Roll-Fronts in a Middle Sand¹¹



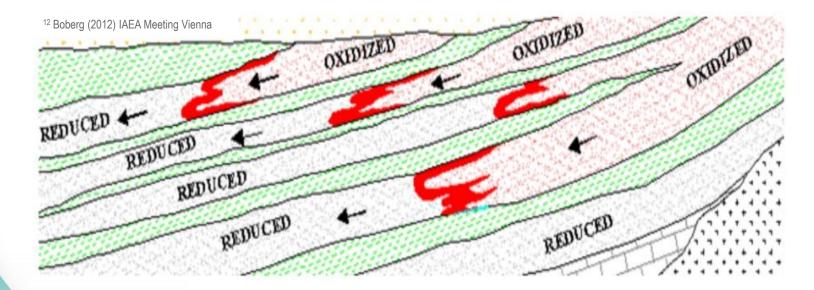
Mapping of sedimentary uranium roll-front deposits

Model Composite Mapping Showing the Complexity of Roll-Fronts in all 3 Sands¹¹



Mapping of sedimentary uranium roll-front deposits

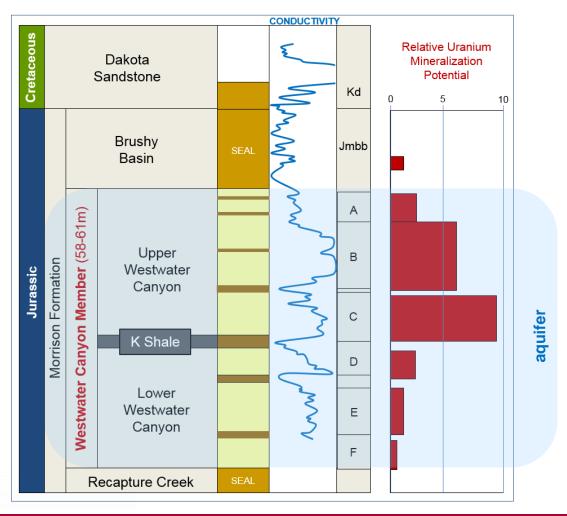
Model Drill Pattern to Test Roll-Front Complexity¹¹



Mapping of sedimentary uranium roll-front deposits

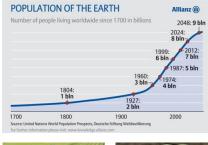
Stacking' of Roll-Fronts in Multiple Sands

- It is not uncommon for multiple sand layers in a sedimentary sequence to contain multiple roll-fronts.
- The complexity of the 3D view of changes in a roll-front combined with the variations in the shape and dimensions of the altered tongue make mapping of each individual roll-front a challenge, let alone multiple stacked fronts.



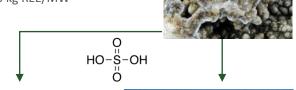
Mapping of sedimentary uranium roll-front deposits

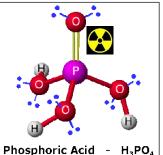
,Stacked' Roll-Fronts in Multiple Sands


Best Practice U-ISR Technology Applications of ISR and UNFC-2009

euREEphos

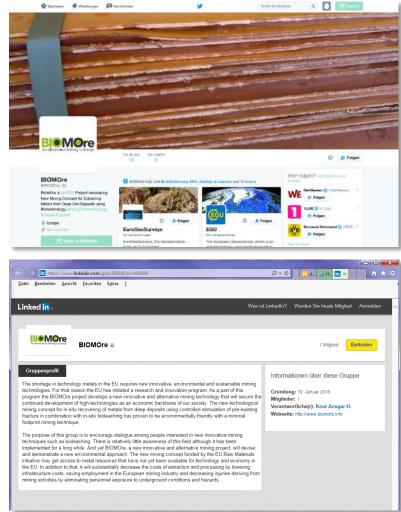
- MAScIR (Morocco), Fertiberia (Spain), Hellagrolip (Greece), Agropolychim (Bulgaria), MMI Bor (Serbia), Phalaborwa (South Africa).
- U/Th variable, mainly in phosphoric acid
- P acid: ca. 10 20% RFF
- PG: ca. 80 90% REE
- Physical, chemical & biological engineering of PG for REE & radionuclide extraction.
- Resource classification by UNFC-2009 code





Best Practice U-ISR Technology Applications of ISR and UNFC-2009

- New In-Situ Leaching Concept for Cu Recovery from Deep Sedimentary Deposits using Biochemistry Technology
 - EU-funded: 8.4 M€ (2014 2017)
 - Industry-led: KGHM Cu mine Poland (23 companies & universities).
 - Bio-chemical leaching of Cu ore (incl. hydrofracturing).
 - Research on bioleaching processes. Construction and operation of undergound test reactor in active Cu mine (KGHM Poland) to demonstrate ISR bioleaching incl. hydrofracturing and leaching of Cu ore (+ Zn, Ni, Co).
 - Turns deep European mineral resources (<1.5 km) into accessible reserves.
 - Sustainable and economic Green Mining Project (no tailings/hazardous chemicals, low CapEx/OpEx).
 - Potential Mine of the Future



Best Practice U-ISR Technology Applications of ISR and UNFC-2009

Best Practice U-ISR Technology Strategic Raw Materials for Europe

STRADE

- EU H2020 funded 1.977.509 €
- 3-yrs (12/2015 11/2018)
- Addresses long-term security and sustainability of European raw material supply from EU and non-EU countries.
- Brings together governments, industry, and civil society.
- Focus on strategic, socioeconomic and invironmental impacts of raw material supply.
- Delivers policy recommendations for an innovative EU strategy on future EU mineral raw-material supplies.

Action Areas

European cooperation strategy with resource-rich countries

Reviewing, engaging, revitalizing

Strengthening the raw materials sector

- Internal competitiveness
- Increasing Competitiveness
- Supporting international competitiveness

Europe's role in sustainable raw material production & supply

- Foundation
- Implementation
- International Resource Governance Alliance (IRGA)

Your Partner for Consulting, Engineering, Exploration & Geotechnics

www.dmt-group.com

Thank you for your attention!

Dr. Michael Haschke, EurGeol Accredited Competent Person for Reporting of Exploration Results, Resources and Reserves

Am Technologiepark 1 45307 Essen, Germany

Email: michael.haschke@dmt-group.com

Phone. +49 160 888 6821

