

IRENA Work on Renewable Energy Potential in South East Europe

Jeff Skeer Senior Programme Officer, Technology Cooperation IRENA

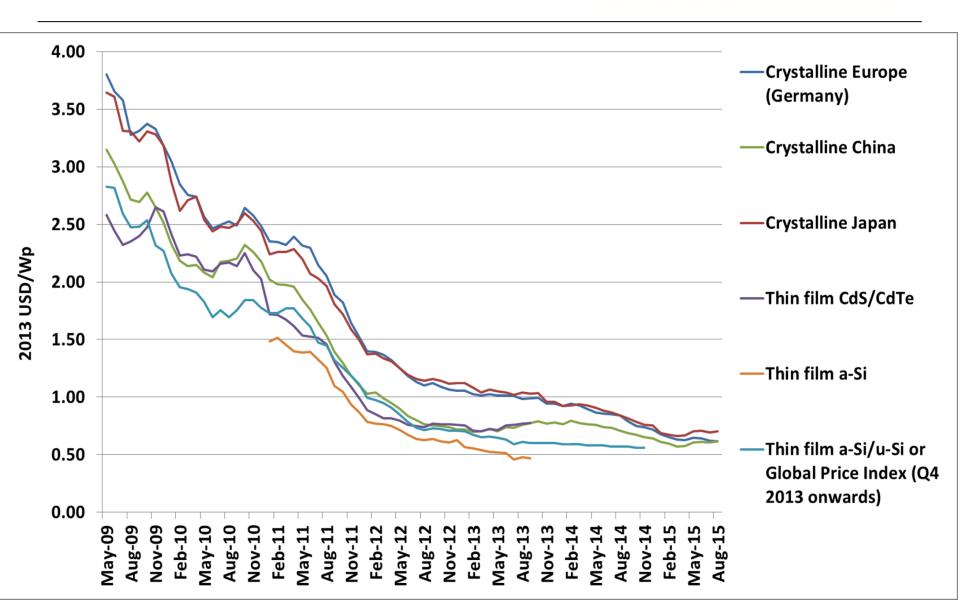
UNECE

Group of Experts on Renewable Energy Geneva, 12 October 2015

RE SEE Overview

- Workshop in Abu Dhabi (2013)
- Developments in 2014 and 2015
- Proposed Activity for 2015 and 2016

- The countries of South East Europe have considerable further potential for cost-effective development of renewable power resources – hydroelectric, biomass, wind and solar.
- Wider dissemination of *empirical cost data on recently built power plants* would help inform countries in updating their NREAPs and considering renewable power options through 2030.
- Significant cost savings could be realized through a systematic integrated resource planning process to identify the optimal mix of renewable and other power options at regional level.

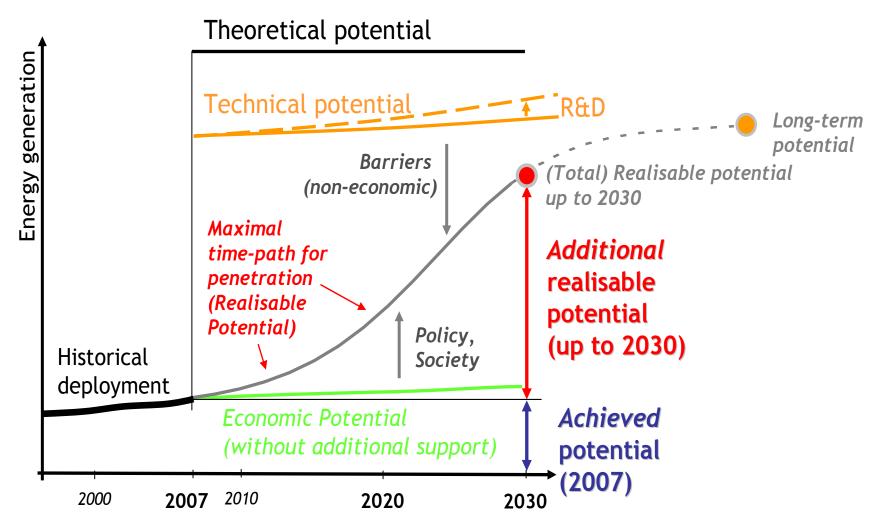

Hydro and Wind Dominate Current RE Action Plans

South East Europe				Δ (0	Δ (GWh) 2009-20			Δ share (%) 2009-20			
Electricity Δ (GWh)					42638			100%			
Hydro small					4360			10%			
Hydro large					19708			46%			
Geothermal					379			1%			
Solar					2865			7%			
Wind					10591			25%			
Biomass					4737			11%			
Electricity	AL	BH	HR	MK	KO	ME	MO	UA	SR	SI	
Total ∆ (%)	100	100	100	100	100	100	100	100	100	100	
Hydro small	33	2	10	17	44	21	0	2	18	5	
Hydro large	61	93	21	56	39	55	5	11	19	52	
Geothermal	0	0	3	0	0	0	0	2	0	0	
Solar	0	0	3	2	0	1	0	19	0	8	
Wind	3	5	33	23	12	18	87	48	32	12	
Biomass	3	NA	30	3	4	5	7	17	30	23	

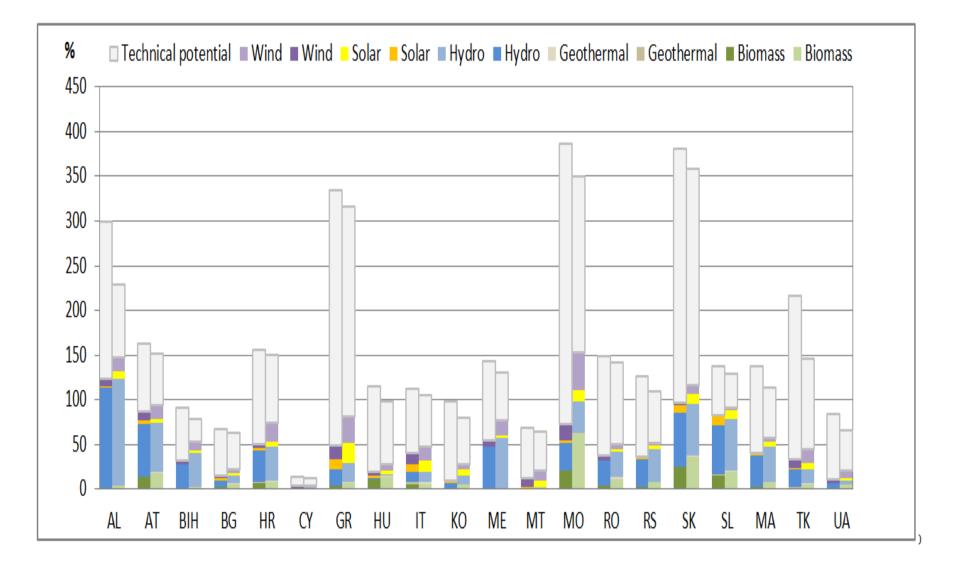
PV Module Prices 2009-2015

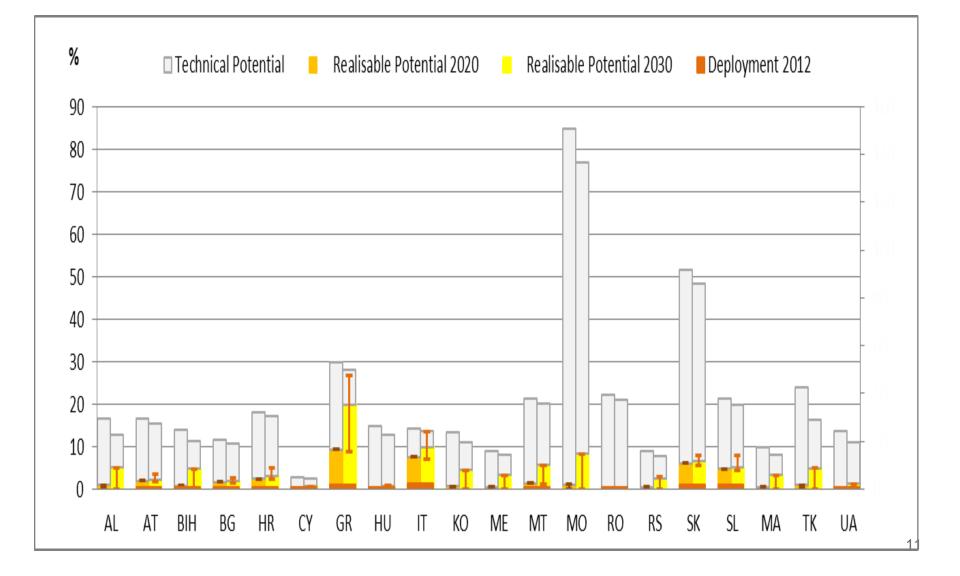
- UNECE Discussion Paper (2014), Status of Renewable Energy in the ECE Region
- REN-21/UNECE (2015), RE Status Report
- European Climate Foundation, Policy Brief on Indigenous Energy Resources of South East Europe
- EU funded BETTER for cooperation with SEE on RE: series of workshops, network of stakeholders (policymakers, system operators and investors)

IRENA Project 2015-16


- Focus on Photovoltaics
 - Cost-Effective Potential
 - Cooperative Financing
- Focus on Broader RE Potential
 - Quantitative Assessment
 - Barriers and Strategies

- Types of potential (schematic)
- RE Potential by 2030 as share of electricity needs
- PV potential by 2030 as share of electricity needs
- Key barriers to RE deployment in SEE
 - Financial barriers
 - Regulatory barriers
 - Administrative barriers


Types of RE Potential


RES-E Potential in SEE vs Electricity Demand in 2030

PV Potential in SEE vs Electricity Demand in 2030

• Loan facilities and risk mitigation instruments are available for utilities.

• Attractive Power Purchase Agreements can elicit investment by IPPs.

 Cooperatives and public-private partnerships can help provide equity.

Reducing Regulatory and Administrative Barriers

- Regulations <u>complex</u>, <u>opaque</u>, <u>inconsistent</u>.
- Complex authorization procedures for <u>new projects</u>.
- Long costly procedures for transmission <u>rights-of-way</u>.
 - How can procedures be streamlined?
 - Can procedures be organized in parallel?
- <u>Permits</u> from many uncoordinated institutions.
- <u>Zoning</u> at local, district and national levels.
 - How can zoning and permits be coordinated?
- Fragmented land ownership may complicate siting.
 - How can land ownership be clarified?

- Need implementing legislation and operational direction.
- Need fuller opening to independent power producers.
- Need more transmission and distribution capacity.
- Need tariffs to reflect full costs of fossil-fueled generation.
- Need better framework for ancillary services and balancing.
- Unclear cross-border transmission capacity for trade.
 - Coordinated Auction Office to be established in Montenegro (for Albania, Croatia, Bosnia and Herzegovina, FYR Macedonia, Greece, Montenegro, Romania, Slovenia, Kosovo* and Turkey).