



## US Shale Gas Revolution–Economic, Commercial and Environmental/ Carbon Implications

Benjamin Schlesinger and Associates, LLC 3 Bethesda Metro Center, Suite 700 Bethesda, Maryland 20814

5th UNECE Gas Centre Industry Forum Outlook for the Long Term Contracts in a Globalizing Market Palais des Nations, Geneva – 19 January 2015



## Shale gas production has swamped North American markets, changing pipeline flows.



Source: EIA Administrator Adam Sieminski, 9/22/2014; from state administrative data collected by DrillingInfo Inc. Data are through July 2014 and represent EIA's official tight oil & shale gas estimates, but are not survey data. State abbreviations indicate primary state(s).



## Increasingly productive Marcellus/Utica shales "suddenly" supply 24% US market.



Source: EIA, Drilling Productivity Report, January 12, 2015; resource data from <a href="http://www.eia.gov/analysis/studies/usshalegas/">http://www.eia.gov/analysis/studies/usshalegas/</a> (Northeast excl. Antrim); Yamal data from Gazprom, <a href="http://www.gazprom.com/about/production/projects/mega-yamal/">http://www.gazprom.com/about/production/projects/mega-yamal/</a>, incl. explored and provisionally estimated; Qatar data from EIA, BP statistical review.



## The US Energy Dept. has approved enough LNG exports to place US first, globally.



Source: BSA 2015, from BP 2014 Statistical Review.

Issue: How high will US LNG export volumes actually get?

- DOE has now approved about 85 mtpa of exports to non-FTA countries and South Korea.
  - Deprived of grounds for rejection by its own studies, DOE recently announced suspension of further LNG export approvals to projects that have not been granted facilities certification from the FERC.
  - FERC is likely to approve environmentally acceptable projects for which bone fide sponsors will assume commercial risk.
- <u>The market, not the regulators, will decide:</u> Global markets, with low oil-indexed prices, may reduce US LNG exports well below approved levels.



### But market expectations of oil price uncertainty have increased in recent months.



Source: U.S. Energy Information Administration, Short-Term Energy Outlook, January 2015 Note: Confidence interval derived from options market information for the five trading days ending Jan. 8, 2015. Intervals not calculated for months with sparse trading in near-the-money options contracts.



# Shale gas has cratered North American gas prices in most regions.



Source: BSA 2015, from Platts Inside FERC's Gas Market Report, January 1, 2015 Spot Gas Prices; Dominion refers to Dominion Appalachia (South Point), New England refers to Tennessee Gas Pipeline, Zone 6.



# Great environmental & carbon advantages of natural gas include shale gas.

- US Environmental Protection Agency (EPA) investigations show groundwater contamination usually pre-exists fracking.
- Over 500 drillers report fluids on Frac-Focus, as required by top producing states.
- Replacing old coal boilers with new gas CCGT reduces CO<sub>2</sub> emissions by 63-72%.
- Environmental Defense Fund (EDF) studies show initial fears of high methane leakage rates (from over-flights) greatly overstated.
- Obama Administration and producing states are adopting "green completions" regulations based on EDF-Univ. of Texas studies.



Hydraulic Fracturing Job Circa 1950

Source: BSA 2015, from FracFocus.com; EPA testimony before US House Subcommittee on Energy and Environment (February 1, 2012), Siemens data; EIA Natural Gas Issues and Trends (1998); Jenner & Lamadrid, Energy Policy 53 (2013) 442-453.



## Global shale gas development potential is estimated to exceed 200 Tcm.



Source: United States basins from U.S. Energy Information Administration and United States Geological Survey; other basins from ARI based on data from various published studies.





### Benjamin Schlesinger and Associates, LLC

The Bethesda Gateway 3 Bethesda Metro Center, Suite 700 Bethesda, MD 20814 Phone: (301) 951-7266 Fax: (301) 951-3381 Visit us at www.BSAenergy.com



## Extra Slides



### Natural gas burns 2x up to 2,590x cleaner than coal, and cleaner than oil as well.



Source: EIA - Natural Gas Issues and Trends 1998



### Over 500 drillers report fluids on Frac-Focus, as required by all top producing states.



Hydraulic Fracturing Job Circa 1950

- First hydraulic fracturing in the 1940s.
- Since then, the process has become routine, used on <u>over 1 million</u> <u>producing wells</u>.
- As the technology continues to develop and improve, operators now fracture as many as 35,000 wells of all types (vertical and horizontal, oil and natural gas) each year.
- 55,978 well sites report fluid contents to FracFocus.



### EPA investigations show nearly all groundwater contamination pre-exists fracking.

- Shale seams co-located with conventional gas, but lie far below groundwater tables.
- Shell, Range Resources and other drillers are recycling return waters in TX, PA.
- Drillers in arid regions are increasingly using waterless and air fracking systems.
- State environmental laws and the CWA prevent dumping of return wastes.
- What pathways are left?
  Operator error! Well bores?



Marcellus Mapped Frac Treatments/TVD

Frac stages (sorted on Perf Midpoint)



## Some near-term surplus gas is replacing coal in aging power plants.

#### **Coal-Fired Plants, MW**



#### **Retiring Coal-Fired Plants**



#### Demand for gas pipeline and storage capacity is intensifying.

Source: BSA 2012, coal plants in 20 Northeast and Mid-West states from EIA, plus Ontario; map from AEP.



# The good news: Replacing old coal with new gas reduces $CO_2$ emissions by 63-72%.

|      | Average<br>Age of<br>Plants<br>at<br>Retire-<br>ment | No. of<br>Plants<br>Retired<br>in Each<br>Year | Total Net<br>Summer<br>Capacity,<br>GW | CO2<br>Reduction<br>Replacing<br>Bituminous<br>Coal with<br>Gas |
|------|------------------------------------------------------|------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|
| 2009 | 50                                                   | 12                                             | 0.5                                    | 67.7%                                                           |
| 2010 | 54                                                   | 35                                             | 1.5                                    | 69.4%                                                           |
| 2011 | 62                                                   | 31                                             | 2.5                                    | 63.3%                                                           |
| 2012 | 56                                                   | 57                                             | 8.9                                    | 63.9%                                                           |
| 2013 | 55                                                   | 14                                             | 2.1                                    | 71.7%                                                           |
| 2014 | 57                                                   | 34                                             | 4.7                                    | 64.4%                                                           |
| 2015 | 57                                                   | 61                                             | 9.9                                    | 63.1%                                                           |

- GHG reduction due to:
  - <u>Chemical</u> advantage: Gas burning emits 46% less  $CO_2$  than coal.
  - <u>Efficiency</u> advantage of new gas CCGTs versus old coal boilers: 55-60% vs. 31-33%.
  - Carbon emissions savings from fuel cycle as well.
- Other criteria air emissions reduced/prevented, especially sulfur, particulates, oxidants.
- But the "low-hanging fruit" might all be picked by 2020.



## Natural gas (CNG and LNG) has begun to find markets trucking, rail and ships.



## But natural gas demand in vehicles will take decades to evolve in the US.

Source: Westport Innovations Inc., Vancouver, BC.



### Issue: Why doesn't America have 20 million NGVs by now?



Source: BSA 2014, from NYMEX, Gas Buddy, BSA estimates.

- Economics have been highly favorable for 3 decades!
- Natural gas is best used in large vehicles, high-mileage fleets:
  - Municipal trucks, buses
  - UPS, Dulles Flyer
  - Forklifts, compressors
- Lower mileage personal vehicles are headed toward electricity:
  - \$4 pipeline gas vs. \$26 gasoline, both per MMBtu
  - 61% efficient CCCTs vs. 26% efficient piston engines
  - No wonder electricity = 79 c/gal!



### Gas-fired electricity means battery EVs are, in effect, just very high-efficiency NGVs.



 Production of methanol and gasoline from natural gas (GTL) will also become options, as price differentials remains favorable.



# Global firms plan to spend more than \$110 billion on new US gas-based industries.

- 175 new manufacturing plants in development:
  - Chemicals & petrochemicals
  - Fertilizers
  - Steel & aluminum
  - Tires, plastics
  - Gas to liquids
- Most sited near shales (see count of # plants at right).
- Increased gas demand will range from 2.1-3.2 Bcf/day by 2025.





## Newer LNG delivery concepts can deliver surplus shale gas to under-served areas.



#### Floating Storage and Regasification Unit

-Terminal is a specially designed moored vessel -LNG storage and regasification done on board -Natural gas piped to shore



### Moored Buoy System with pipeline to

#### <u>shore</u>

-Special ships moor to buoy -Regasification done on board the ship -Ship departs once LNG regasified



### Gravity Based Structure

- Terminal is submerged concrete structure
- LNG storage and regasification done on terminal
  - Natural gas piped to shore

Source: Center for LNG.