

<u>The Kazakhstan Green Bridge Initiative Conference 2016</u> Critical Element of the Green Bridge Initiative: Advanced Fossil Fuel Technologies

Clean Coal Technology for the Future Power Generation ~~~Experiences in Japan~~~

Astana, Kazakhstan 9 March, 2016

Keiji MAKINO

Senior Fellow Japan Coal Energy Center

CONTENTS

- **1. Coal Now ~~Situation of Japan~~**
- 2. What is Clean Coal Technology?
- **3. Coal Preparation**
- **4. Environmental Protection**
- **5. Global Warming**
 - **5.1 High Efficiency**
 - **5.2 CO₂ Capture**
 - **5.3 Biomass Co-Combustion**
- **6. Utilization of Coal Ash**
- 7. Japanese Roadmap of Clean Coal Technology R&D
- 8. Lastly-----

1. Coal Now –Situation of Japan--

World Coal Production and Consumption

World Coal Production IEA Coal Information 2015

IEA Coal Information 2015

World Coal Import

IEA Coal Information 2015

Coal and Electricity Demand

Electricity Generation Mix of Japan

- July 2015, Japan's New Energy Mix towards 2030 was decided.
- The basic policy of "Energy Mix" is to realize a balanced power source composition, while achieving 3E+S(Safety, Energy Security, Economic efficiency and Environment).
- Coal is positioned as the important energy source to be used while the environmental burden.

2. What is Clean Coal Technology ?

Components of Coal and Emissions

Component	Molecule	Content(%)	Emission	Problems	Countermeasures
Carbon	C	70-75	CO2	Global Warming	High efficiency, CCS
Hydrogen	H2	around 5	Steam	None	
Oxygen	02	around 8	Support combustion	None	
Nitrogen	N2	0.2-3	NOx	Problems torespiratory organ	De-NOx(SCR)
Sulpher	S	0.1-5	SOx	Problems torespiratory organ	De-SOx
Ash	SiO2, Fe2O3, Al2O3, etc.	15-50	Fly ash	Problems torespiratory organ	EP, Bag Filter, Cyclone Seperator
Heavy metals	Hg, Cl, F, Cd, Se, Pb, etc.		Heavy metals	Health Problems	Activated Carbon, Wet Scrubber

Clean Coal Technology ===== Remove emissions from flue gas

Clean Coal Technology

4. Environmental Protection

Flue Gas Treatment Facilities

De-SOx Facility

Electrostatic Precipitator

Japanese History of NOx Regulation

Environmental Monitoring of SO_2 and $\overline{NO_2}$

- Environmental protection for SO2 emission from factories completed in 1970's
- Environmental protection for NO2 emission from factories completed in 1980's

Drastic Change of Air Pollution in Japan

Tokyo industrial area 1955

Tokyo industrial area 1970

Tokyo industrial area 1970

Present Tokyo

NOx and SOx emission levels in Power Generation by country

5.1 High Efficiency High-Efficient Coal Fired Power Generation

World Highest Efficient Coal fired Power Station ---Isogo No.2 600MW 600/620C USC (Japan)---

Efficiency : Gross 44% Net 41% (HHV Basis)

Installation of USC in the World

First Ultra Super Critical Unit (USC) was installed in Japan in 1993.
 Since then, USC is increasing RAPIDLY and Super-Critical and Sub-Critical units are decreasing.

 \cdot 60% of recent installation is USC in the world.

SC is less than 10% and Sub-Critical is small number.

- Countries where USC were already operated:-Japan, Germany, Italy, Poland, Czech Republic, Netherland, Slovenia, USA, China, Korea, Taiwan, Malaysia,
- Countries where USC is planned:-Greece, Indonesia, India, Philippines, Morocco, Vietnam

Efficiency of Coal Power Generation of Various Countries (HHV, Gross)

IEA Electricity Information 2015 : Calculated by JCOAL

Life Cycle Cost of USC

- Total cost of USC is smaller when compared with Sub-Critical unit, when studied about the case in developing country.
- Conditions of estimation:-

Advanced USC (A-USC)

Japan 2012
 700 degree C, 500MW Class

- India 2011
 700 degree C, 800MW
- EU 2021 700 degree C, 540MW
- USA 2021
 760 degree C 35MPa Developed by NETL
- China 2011
 700 degree C, Double Reheat

System flow of IGCC (Nakoso 250 MW IGCC)

New IGCC (Website)

- **Osaki CoolGen 170MW:**
- Nakoso About 540MW : Start of construction
- Hirono
- **Operation: 2017**
 - **Start of operation**
- About 540MW : Start of construction **Start of operation**
- **2016(Planned)** Early 2020(Planned) 2016(Planned) Early 2020(Planned)

Development of IGCC

Japanese IGCC

• Nakoso NO.10 : 250MW **Commercial Operation : April 2013**

● Osaki CoolGen : 170MW

Operation: 2017

New IGCC plan(Website of Nakoso and Hirono)

- **Osaki CoolGen 170MW : Operation: 2017**
- Nakoso About 540MW : Start of construction **2016(Planned)** Start of operation Early 2020(Planned) About 540MW : Start of construction Hirono
 - Start of operation

2016(Planned) Early 2020(Planned)

Produce Chemicals from Coal Gasification

Carbon Capture and Storage METI

CCS 2020

No less important is "High Efficient Power Generation + CCS"

Distribution of Storage Capacity (IPCC Special Report)

Prospective areas in sedimentary basins where suitable saline formations, oil or gas fields, or coal beds may be found.

CO₂ Injection Point

In-Salah

Weyburn

(CO₂ from Coal Gasification)

SaskPower Boundary Dam (CO₂ from Coal firing)

CO₂ Capture from Coal-fired Power Plant

<u>1. Pre-combustion</u>

Japanese CCS Demonstration Project

- Place: Tomakomai(Japan)
- Injection capacity : 0.1Mt-CO₂/year
- Schedule : Project start 2008 Injection 2016-2018

Tomakomai CCS Website

Japanese CCS Demonstration Project

Tomakomai CCS Website

RCRIEP

Pulverization Biomass with Coal

SEM Pulverization coal/biomass

Cedar bark

Pine tree bark

Cedar chip

Saw dust of pine tree

CRIEPI Biomass Forum

Reduction of Coal Consumption

Coal technology conference(Shikoku Power)

6. Utilization of Coal Ash

7. Japanese Roadmap of Clean Coal Technology R&D

8. Lastly------

- Coal should be used as a main fuel in the future.
- Especially, non-OECD countries will use more coal for there economic growth than OECD countries.
- However, consideration should be paid to reduce air pollution and CO₂ emission in order to continue using coals.
- Now, Clean Coal Technology is essential.
- Japan will contribute in the world for use of clean and high efficient coal power generation.

Thank you for your attention.

