Table SEIS performance by data set by country | | | | | | | | | | | | | 1 | | | С | | | | | | | | | | | | | - | + | $\overline{}$ | _ | |--|-----|-----|-----|-----|-----|-----|-------|-----|----------|------|-----|------|-----|-----|-------|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-------|-----|------|-----|-----|---------------|-----|--------|-----|------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------------|--------------| | data sets | KAZ | KGZ | TJK | TKM | UZB | ARM | GEO | AZE | BLR | MDA | RUS | UKR | ALB | ВІН | KOSOV | MKD | MNE | AUT | BEL | BGR | HRV | CYP | CZE | DNK | EST | NII G | DEU | GRC | HUN | IRL | ШΑ | LVA | D.I.O. | MLT | NLD | POL | PRT | ROU | SVK | NAS | ESP | SWE | GBR | LIE | ISI | NOR | CHE | USA | CAN | ISR | | Emissions of sulphur expressed | in sulphur dioxide (total, | stationary and mobile sources) | - 1 | 1 | 0 | 0 | 0.6 | 6 | 1 0. | 6 | 1 | 1 | 1 | 1 1 | 0.8 | 0 | 0.8 | 1 | 0.8 | 1 | 1 0.8 | 1 | 1 | 0 | 1 | 0.8 | 0.8 | 1 | 1 | 1 (|) 1 | 1 | 1 | 0.8 | 0.8 | 0.8 |).6 | 1 0.8 | 0.8 | 1 | 0.8 | 0.8 | 0.8 | 1 | 1 | 0 | 1 | 1 | 0.8 | 1 0. | 6 | 0 | | Emissions of nitrogen oxides
expressed in nitrogen dioxide | (total, stationary and mobile
sources) | 0.8 | 1 | 0.8 | 0 | 0.6 | 6 | 1 0.0 | 6 | 1 | 1 | 1 | 1 1 | 0.8 | 0 | 0.8 | - 1 | 0.8 | 1 | 1 0.8 | 1 | 1 | 0 | 1 | 0.8 | 0.8 | 1 | 1 | 1 (|) 1 | 1 | 1 | 0.8 | 0.8 | 0.8 | 0.6 | 1 0.8 | 1 | 1 | 0.8 | 0.8 | 0.8 | - 1 | 1 | 0 | 1 | 1 | 0.8 | 1 | 1 | 4 | | Emissions of non-methane | | | | | | Ť | - | | 1 | | 1 | 1 | 1 | | | | | 1 | - | | | | | | | 1 | 1 | 1 | | | | | - | - | _ | 1 | | | | | | | | Ť | | 7 | | 1 | Ħ | \mathbf{t} | | volatile organic compounds | (NM VOCs) (total, stationary | / | | and mobile sources) | - 1 | 1 | 0 | 0 | (| 0 | 1 0. | 6 | 1 | 1 | 0 | 1 1 | 0.8 | 0 | 0 | 1 | 0.8 | 1 | 1 (|) 1 | 1 | 0 | 0 | 0.8 | 0.8 | 1 | 1 | 1 (|) 1 | 1 | 1 | 0.8 | 0 | 0 0 |).6 | 1 0.8 | 3 1 | 0 | 0 | 0.8 | 0.8 | 1 | 1 | 0 | 1 | 1 | 0.8 | 1 | 0 ! | 4_ | | Emissions of ammonia (total, | ١, | , | 0 | 0 | | | , . | | , | , | , | , , | 0.8 | | | ٠, | 0.8 | , | , , | | ٠, | 0 | , | 0.8 | 0.8 | , | , | , , | , , | , | , | 0.8 | | 0.8 | 0 | 1 0.8 | 0.8 | | | 0.8 | 0.8 | | ٠, | | 0 | , | 0.8 | 1 0. | 0 | | | stationary and mobile sources)
Emissions of carbon monoxide | - 1 | 1 | U | U | _ | U | 1 ' | U | 1 | 1 | 1 | 1 1 | 0.8 | U | U | -1 | 0.8 | 1 | 1 (| 1 | 1 | U | - 1 | 0.8 | 0.8 | 1 | 1 | 1 1 | , 1 | - 1 | - 1 | 0.8 | U | 0.8 | U | 1 0.0 | 0.8 | U | 0 | 0.8 | 0.8 | - 1 | - 1 | U | U | -1 | J.8 | 1 0. | 0 1 | +- | | (total, stationary and mobile | / | | sources) | 1 | 1 | 0 | 0 | 0.6 | 6 | 1 0.3 | B | 1 | 1 | 1 | 1 1 | 0.8 | 0 | 0.8 | 1 | 0.8 | 1 | 1 (| 1 | 1 | 0 | 0 | 0.8 | 0.8 | 1 | 1 | 1 (|) 1 | 1 | 1 | 0 | 0 | 0.8 | 0 | 1 0.8 | 0 | 1 | 0 | 0.8 | 0.8 | 1 | 1 | 0 | 1 | 1 | 0.8 | 0 | 1 | i | | Emissions of lead (total, | T | | stationary and mobile sources) | 1 | 1 | 0 | 0 | (| 0 | 1 | 0 | 0 | 0 | 1 | 1 1 | 0.8 | 0 | 0 | 0 | 0 | 1 | 1 (| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 (|) 1 | 1 | 0.8 | 0 | 0 | 0 | 0 | 1 (| 0 | 0 | 0 | 0.8 | 0 | 1 | 1 | 0 | 0 | 1 | 0.8 | 1 0. | .6 |) | | Emissions of cadmium (total, | stationary and mobile sources) | 1 | 1 | 0 | 0 | (| 0 | 1 | D | 0 | 0 | 0 | 1 1 | 0.8 | 0 | 0 | 0 | 0 | 1 | 1 (| 1 | 0 | 0 | 0 | 0 | 0.8 | 1 | 1 | 1 (|) 1 | 1 | 0.8 | 0 | 0 | 0 | 0 | 1 (| 0 | 0 | 0.8 | 0.8 | 0 | 1 | 1 | 0 | 0 | 1 | 0.8 | 0 0. | .8 | i | | Emissions of mercury (total, | 1 | | stationary and mobile sources) | 1 | 1 | 0 | 0 | (| 0 | 1 | O | 0 | 0 | 0 | 1 1 | 0.8 | 0 | 0 | 0 | 0 | 1 | 1 (| 1 | 0 | 0 | 0 | 0 | 0.8 | 1 | 1 | 1 (|) 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 (| 0 | 0 | 0.8 | 0.8 | 0 | 1 | 1 | 0 | 0 | 1 | 0.8 | 0 0. | .6 | i | | Emissions of polycyclic | aromatic hydrocarbon (PAH) | 4 | | (total, stationary and mobile | sources) | 0 | 0 | 0 | 0 | (| 0 | 0.0 | 6 | 0 | 0 | 0 | 1 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (| 1 | 0 | 0 | 0 | 0 | 0.8 | 1 | 1 | 1 (| 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 (| 0 | 0 | 0.8 | 0.8 | 0 | 1 | 1 | 0 | 0.8 | 1 | 0.8 | 1 | 0 (|) | | Emissions of polychlorinated | 4 | | biphenyl (PCB) (total, | 4 | | stationary and mobile sources) | 0 | 0 | 0 | 0 | (| 0 | 0 | D | 0 | 0 | 0 | 0 (| 0.8 | 0 | 0 | 0 | 0 | 0 | 1 (| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 (| 0 | 1 | 0.8 | 0 | 0 | 0 | 0 | 1 (| 0 | 0 | 0.8 | 0.8 | 0 | 1 | 1 | 0 | 0 | 1 | 0.8 | 0 0. | 8.0 | š | | Emissions of polychlorinated | dibenzo-p-dioxin and | 4 | | poly chlorinated dibenz ofuran | (PCDD/F) (total, stationary and | 0 | 0 | 0 | 0 | | 0 | 0 | n | 0 | 0 | 0 | 0 (| 0.8 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 (| 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 (| 0 | 0 | 0.8 | 0.7 | 0 | - 1 | 1 | 0 | 1 | 1 | 0.8 | 1 | 0 0.8 | | | Emissions of total suspended | Ĭ | Ü | Ů | | H Ì | | _ | _ | - | | | | 0.0 | | Ť | Ť | | - | | | | · | Ŭ | | v | + | ╁ | • | , , | | \dashv | J | Ť | - V | | + | | | 0.0 | 0.7 | | | | Ŭ | | - | J.0 | • | 0.0 | + | | particles (TSP) (total, stationary | and mobile sources) | 1 | - 1 | 0 | 0 | | n | 1 0.0 | 6 | 0 | 0 | 0 | 1 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 | 0.8 | 0 | 0 | 0 | 0 | 1 | 1 | 1 (| 0 | 1 | 1 | 0 | 0 | 0.8 | 0.2 | 1 (| 0 | 0 | 0 | 0 | 0 | - 1 | - 1 | 0 | 0 | 1 | 0.8 | 0 0. | 6 | d . | | Emissions of PM ₁₀ (total, | H | _ | | - | H | _ | . 0. | _ | <u> </u> | | - | +- | Ť | Ŭ | Ť | Ť | | _ | | _ | 0.0 | - | - | Ŭ | Ů | + | ÷ | +- | , , | H | \rightarrow | _ | Ť | 0.0 | , <u>.</u> | + | _ | Ť | _ | - | Ť | _ | | Ť | Ů | - | 5.0 | 0. | + | + | | stationary and mobile sources) | | 0 | 0 | 0 | 0.6 | _ | 0 | n | 0 | 0 0: | 0 | 0 1 | 0.8 | 0 | 0.8 | 0 | 0.8 | 1 | 1 0.8 | | 0 | 0 | 0.8 | 0.8 | 0.8 | , | , | 1 4 | 1 | | , | 0.8 | 0 | 0.8 |),6 | 1 0.8 | | , | 0 | 0.8 | 0.8 | - 1 | 1 | 0.6 | 0 | 1 | 0.8 | 0 0. | 6 | A. | | | 1 | U | U | U | 0.0 | U | 0 | | U | 0.0. | .0 | 0 1 | 0.0 | U | 0.0 | U | 0.0 | 1 | 1 0.0 | 1 | U | U | 0.0 | 0.0 | 0.0 | 1 | 1 | 1 1 | , 1 | - 1 | - 1 | 0.0 | U | 0.0 | 7.0 | 1 0.0 | , , | - 1 | 0 | 0.0 | 0.0 | - 1 | 1 | 0.0 | U | 1 | J.0 | 0 0. | 0 1 | +- | | Emissions of PM 2.5 (total, | | 0.2 | | 0 | | _ | | | | 0 0: | 0 | | | | 0.0 | | 0.0 | , | | | | | 0.0 | | 0.0 | | , | | | ١., | | 0.8 | 0 | | 0.4 | | | | | | 0.8 | | ٠, | 0.6 | | | 0.8 | 0 0 | | 4 | | stationary and mobile sources) | 0 | 0.2 | 0 | 0 | 0.6 | 6 | 0 1 | U | 0 | 0 0. | .8 | 0 1 | 0.8 | 0 | 0.8 | 0 | 0.8 | 1 | 1 0.8 | 1 | 0 | 0 | 0.8 | 0.8 | 0.8 | 1 | 1 | 1 (|) 1 | 1 | 1 | 0.8 | 0 | 0.8 |).4 | 1 (| 0 | - 0 | 0 | 0.8 | 0.8 | 1 | 1 | 0.6 | 0 | 1 |).8 | 0 0. | 4 | 4_ | | Annual average concentration of | | | | | | | | _ | sulp hur dioxide | 0.6 | 0 | 0 | 0 | 0.6 | 6 | 1 0. | 6 | 1 | 1 | 1 | 1 1 | 1 | 0 | 0 | 1 | 0.8 | 1 | 1 0.8 | 1 | 0.4 | 0 | 1 | 0 | 1 | 1 | 1 0 | .8 (|) 1 | 1 | 1 | 0.8 | 0.8 | 0 0 |).6 | 1 0.8 | 3 0 | - 0 | 0.8 | 0.8 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 4 | | Annual average concentration of | | | | | | _ | | _ | | | | | | | | | | | | | | | | _ | nitrogen dioxide | 0.8 | 0 | 0 | 0 | 0.6 | 6 | 1 0. | 6 | 1 | 1 | 1 | 1 1 | | 0 | 0 | 1 | 0.8 | 1 | 1 1 | - 1 | 0 | 0 | - 1 | 0 | 1 | 1 | 1 | 1 (|) 1 | - 1 | - 1 | 0.8 | 0.8 | 0 0 |).6 | 1 0.8 | 0 | 0 | 0 | 0.8 | 1 | - 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 4_ | | Annual average concentration of | , , | | | _ | Ι. | | | | | | , | , | | | | | 0.0 | | | | | | , | , | | | , | | | | , | 0.0 | | | | , . | | | | 0.0 | | | | | , | | | | | | | ground-level ozone | - 1 | 0 | 0 | 0 | (| U | 1 | U | U | U | 1 | 1 (| 1 | 0 | 0 | 1 | 0.8 | 1 | 1 0.8 | 0.8 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 (| , 1 | - 1 | 1 | 0.8 | 0 | 0 0 |).6 | 1 0.8 | 1 | - 0 | 0 | 0.8 | 1 | - 1 | - 1 | U | I | 1 | 0.8 | 1 | 1 | 4 | | Annual average concentration of | | | | | ١ | PM | 0.8 | 0 | 0 | 0 | 0.6 | 6 | 1 0. | 6 | 0 | 0 | 1 | 1 (|) 1 | 0 | 0 | - 1 | 0.8 | 1 | 1 1 | 1 | 0 | 0 | 0.8 | 0 | 1 | 1 | 1 | 1 (|) 1 | - 1 | 1 | 0.8 | 0 | 0 0 |).6 | 1 0.8 | 1 | 0 | 0 | 0.8 | 1 | 1 | - 1 | 0 | 0 | 1 | 0 | 1 | 0 1 | 4 | | Total ozone depleting | potential(ODP) of | chlorofluorocarbons (CFCs) | | 1 | 0 | 0 | 0.6 | 6 | 1 0. | 6 | 0 | O. | 1.1 | 11 (| 0.2 | 0.2 | 0 | | | | n n s | 0 | 0 | 0 | 0.6 | 0 | 0.8 | 0 | 0.1 | 0 (|) 1 | 0 | 0.8 | 0.8 | 0 | 0 | 0 0 | 8 0.8 | 0 | 0 | | 0.6 | | | | | | | 0 0 | 0 0 | 8 | d l | | The content of co | | | | | | | 1 | 1 | 1 | | | | | | | 0 | | | | | | | | 1 | | | | - | | | | | | | | | | - | | | | | | | | | | | _ | _ | _ | | |--|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|-----|-----|------|-----|-------|-----|-----|----|-----|------------|-----|-----|-------|----|-----|----------|-----|-----|--------|-------|------|------|--------|-----|-----|-----|-----|-----|-----|-----|------|-----|------|-----|----|---------|-----|------|-------|-------|-----| | Teach Performance 1 0 0 0 0 0 0 0 0 0 | data cets | CAZ | ZDX | ЭJК | KW. | 7ZB | VRM | 3B0 | Œ | 3LR | ADA | SUS | JKR | VI.B | HIE | COSOV | 4KD | 4NE | RB | TOV | SEL
SCB | IRV | 3YP | ZE | NK | ST | NI: | 'RA | DEU | J.K.C. | NOI I | 7 Y | ,VA | DI. | YO. | ALT | (ID | OL | RT. | noa | VK | N.N. | SP | WE. | H H | ST | ZOR ZOR | ž ž | 田田 | ISA | CAN | SR | | Tract Order of whee they believed in the the whee they believed in the whee | | - 1 | - 0 | | - | _ | _ | | | - 0 | - 1 | 1 | | | 1 | - 0 | 1 | _ 0 | 1 | - 0 | 0 | 0 = | 0 | _ | | | <u> </u> | | | | | 0 - | 0 - | 0 - | | | | - 0 | | 0 | | | 0 | 1 | 1 | | 0 | 1 | | _ | 0 1 | | | Segment CPC 1.1. Segmen | | | - 0 | - 0 | | 1 | 1 | 0.0 | 1 | | 1 | - 1 | - 0 | 0.2 | - 1 | - | | - 0 | -1 | - 0 | - 0 | 0 | - | 0 0 | 0 | 0.0 | 0 | - 0 | - 0 | 0 | 0.0 | 0 | | 0 (| - | 0 | - 0 | - 0 | - 0 | - 0 | - 0 | 0.4 | - | + | - | 0 | - | 1 | 0. | .0 | 4 | | | | halogenated CFCs | 1 | 0 | 0 | 0 | 0 |) 1 | | 0 | 0 | 1 | 1 | 0 | 0.2 | 0.8 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0.8 | 0 | 0 | 0 | 0 | 0.8 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | 0 | 1 | 1 | 0 | 0 | 1 | 0 0. | .8 | 0 1 | 0 | | Trace Proper Pro | | | 0 | 0 | | | , , | | | | | ١., | 0 | 0.2 | 0.0 | 0 | , | 0 | , | 0 | 0 | 0 | 0 | 0 0 | | 0.0 | 0 | 0 | 0 | | 0.0 | 0 0 | | 0 (| | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | 0 | | , | 0 | 0 | | 0 0 | | 0 1 | | | Instruction of the proper series seri | | 1 | 0 | 0 | - | | 1 | | 1 | - | 1 | - 1 | 0 | 0.2 | 0.0 | U | | U | -1 | U | 0 | U | 0 | 0 0 | 0 | 0.0 | U | U | U | 0 | 0.0 | 0 0. | 1.0 | 0 (| 0 | U | U | U | U | U | U | 0.0 | U | -1 | 1 | U | U | - | 0 0. | .0 |) 1 | - 0 | | See Production Seed of the see | | 1 | 0 | 0 | 0 | 0 |) 1 | | 0 | 0 | 1 | 1 | 0 | 0.2 | 0.8 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0.8 | 0 | 0 | 0 | 0 | 0.8 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 (| 0 1 | 0 | | In the proper plane when wh | 1 | | Tax of Def interly tensories - Mary animal device from Progression Pr | | 1 | 1 | 0 | 0 | 0 |) 1 | | 0 (| 1 | . 1 | 1 | 0 | 0.2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0.8 | 0 | 0 | 0 | 0 | 1 | 0 0. | .8 | 0 (| 0 | 0 | 0.8 | 0.8 | 0 | 0 | 0 | 0.6 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 1 | O | | Accordance from the long construction l | | 1 | 1 | 0 | 0 | 0 |) 1 | 0 |) 1 | 0 |) 1 | 1 | 0 | | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | | 0 | 0 | 0 | 0 | 0.8 | 0 | 0 | 0 (| 0 | 0 | | 0 | 0 | 0 | | | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 1 | (| | In a part of the large companies and compani | Amound excitation from the keep and programmed and proposed use, a great property of the prope | | | | | _ | | | | | | | | | | | _ | | _ | | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | 1. | | Lem such presentations in the lem such presentation presen | | 1 | 1 | - 1 | 0 | 0 |) 1 | |) 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 0.6 | 0 | 0.8 | 1 | 1 | 0 | 0 | 1 | 0 | 1 0. | .8 0.8 | 0 | 0.8 | 0.8 | 0.8 | 1 | 0 | 0 | 0.8 | 0 | 1 | 0 | 0 | 1 | 1 0 | .8 | 1 1 | 1 0.8 | Ε. | | Experimental Processors by Configuration Serving consistent Serving Configuration Servin | term average precipitation | 1 | 0 | 1 | 0 | 0 |) 1 | 0 |) 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0.6 | 0 | 0.8 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 (| 0 | 0.8 | 1 | 0 | 1 | 0 | 0 | 0.8 | 0 | 0 | 0 | 0 | 1 | 1 0 | 1.8 | 0 | 1 1 | (| | Fig. MULTICE 1 1 0.8 0 0 1 0.8 1 0.8 0 0 1 0.8 1 0 0 0 1 1 1 0 1 0 0 | 1 | | energy, midsterial processes, surjectively, find sees and ferestly, reference of the content | | 1 | 1 | 0.8 | 0 | 0 |) 1 | 0.4 | 1 | 1 | . 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0.8 | 1 | 1 | 0 | 1 | 1 | 0 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 0. | .8 (| 0 | 0.8 | 1 | 0.8 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 0 | 0.8 | 1 | 1 1 | (| | Selection and other product use, a mad (firestly, waster am) of the product use, a mad (firestly, waster) of the product use, and | Expressional regressions and consider free water shources of the power resources of the power | 1 | | Greently, waster I al 0 8 0 0 1 1 0 0.8 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 | 1 | | Total freshwater abstraction by water b | | 1 | 1 | 0.8 | 0 | 0 |) 1 | 0.4 | 1 | 1 | . 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0.6 | 0 | 0 | 1 | 0.8 | 1 | 0 | 1 | 1 | 1 0. | .8 | 0 | 0.8 | 0 | 0.8 | 1 | 0 | 0.8 | 0.8 | 0 | 1 | 1 | 0 | 1 | 1 0 | 1.8 | 1 | 1 1 | 0 | | Freshwater abstraction by water abstraction by water abstraction by water abstraction by water activities 0.4 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 | Renewable freshwater resources | 1 | 0 | 0 | 0 | 0 |) 1 | 0.6 | 5 1 | 0 | 0.6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0.8 | 0 | 0 | 0 | 1 | 0.8 | 0 | 0 | 1 | 1 | 0 0 | 0 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 0 | 0.8 | 0 | 0 0 | 0 | | Feshwater abstraction by water susprise distribution of the common th | l | | Freshwater abstraction by water supply industry, households. Agriculture forestry and fishing of which trigation, manufacturing electric industry. other cocomic activities O | | 0.4 | 1 | 0 | 0 | 0.6 | 5 1 | 0.6 | 1 | 1 | 1 | 1 | 1 | 0 | - 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 0 | 8 | 0 1 | 0 | 0.4 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 08 | 0 | 0 | 0.8 | 0.8 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 0 | 8 (| 0 | 0 1 | 0 | | supply industry, households. 2 griculture forestry and fishing of which irrigation, manufacturing electric industry, other conomic activities 0.4 0 0 0 0 0 1 1 0.6 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 | | 0.4 | | | | 0.0 | 1 | 0.0 | | | | | | | -1 | | | | | | | - | | | | 0.4 | - | | | | + | - | + | 0.0 | | - | 0.0 | 0.0 | | | | | | + | | | | 0 0 | - | | 1 | | | agriculture forestry and fishing, manufacturing electric industry, other economic activities O,A O O O O O O O O O O O O O | 1 | | Other economic activities | 1 | | Water exploitation index 0.4 0 0 0 0 0 0 0 0 0 | l | | Total freshwater available 1 0 0 0 0 1 0.6 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 | other economic activities | 0.4 | 0 | 0 | 0 | 0 |) 1 | 0.6 | 5 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 0.8 | 0 | 0 | 0.8 | 0.8 | 0 | 0 | 0 | 0 | 0.8 | 1 | 0 | 0 | 0 | 0 0 | J.8 | 0 | 0 0 | (| | Total freshwater use | Water exploitation index | 0.4 | 0 | 0 | 0 | 0 |) 1 | | | 1 | . 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 0 | 0 | 0.4 | 0 | 0 | 0.8 | 0 | 0 | 1 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 | 1 | 0 | 0 | 0 | 0 0 |).8 | 0 | 0 0 | (| | Losses of water during transport 0.4 I 0 0 0 1 0.8 I 1 0 0 0 1 0.8 I 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 1 | 0 | 0 | 0 | 0 |) 1 | | | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 (| 0 | 0.8 | 0 | 0 | 1 | 0 | 0 | 0 | 0.8 | 1 | 1 | 0 | 0 | 0 0 | .8 | - | - | | | Freshwater use by households, agriculture forestry and fishing of which irrigation. manufacturing electric industry. other economic activities 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 | Total freshwater use | 0.4 | 1 | 0 | 0 | 0.6 | 5 1 | 0.6 | 5 1 | 1 | . 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 0 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0 | 1 | 0 | 1 (| 0 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 0 | .8 | 1 0.8 | 8 1 | 0.8 | | agriculture forestry and fishing of which irrigation. manufacturing, electric industry, other economic activities 1 1 0 0 0 1 1 1 1 0 0 | Losses of water during transport | 0.4 | 1 | 0 | 0 | 0 |) 1 | 0.8 | 8 1 | 1 | 0.8 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 0 | .8 | 0 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 0 | 1.8 | 1 0.0 | 8 0 | (| | of which irrigation, manufacturing, electric industry, other comments activities 1 1 0 0 0.6 1 0.6 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 | Freshwater use by households, | 1 | | nanufacturing electric industry, other economic activities 1 1 0 0 0.6 1 0.6 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 | agriculture forestry and fishing | 1 | | other economic activities 1 1 1 0 0 0.6 1 0.6 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 | 1 | | Population connected and not- Sconnected to water supply industry 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 | | | | | | 0. | | 0.0 | | | | | | 0 | ١, | 0 | , | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | | 0 0 | 0 0 | _ | 0.8 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | ٠, ١ | 0 | 0 | 0 | 0 0 | | 1 0 | | 0.5 | | Connected to water supply | | 1 | - 1 | 0 | 0 | 0.6 | 1 | 0.6 | 1 | - 1 | 1 | - 1 | 0 | 0 | - 1 | U | - 1 | 0 | U | U | 0 | 0 | U | 0 1 | 0 | 0 | 0 | 0 | 0 | U | U | 1 | 0 0. | .8 0.6 | 0 | 0.8 | 0.8 | U | U | 0 | U | 0 | 0 | -1 | 0 | U | U | 0 0 | .8 | 1 0.8 | 5 1 | 0.8 | | industry 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 | i | | | industry | 0 | 0 | 0 | 0 | 0 |) 1 | |) (| 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 0.5 | 8 0 | 0 | | | Mean concentration of BOD in
major rivers | 0.4 | 1 | 0 | 0 | 0.6 | . 1 | 0.6 | , | 1 | 1 | 1 | 1 | 0.8 | 0.8 | 0 | 1 | 0.8 | 1 | 0 | 0 | 1 | 0 | 0 1 | 0 | 0 | 0 | 0.8 | 0 | 0 | 1 | 0 | 0 | 0 05 | 0.6 | 0 | 0 | 0.8 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 06 | 0 | | - I | _ | | |--|-----|-----|-----|-----|------|-----|-----|-----|----|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|--------|-----| | -i | | | | | | | | | | | | | | | KOSOVO | quan | KAZ | KGZ | TJK | IKM | UZB | ARM | GEO | AZE | LR | MDA | RUS | UKR | ALB | ВІН | SOS | MKD | MNE | SRB | AUT | BEL | BGR | HRV | CYP | CZE | DNK | EST | HIN | FRA | DEU | GRC | HUN | IRL | ITA | LVA | LTU | TUX | MLT | NED | POL | PRT | ROU | SVK | SVN | ESP | SWE | GBR | LIE | ISL | NOR | TUR | CHE | USA | CAN | ISR | | data sets Mean concentration of | X | × | T | T | C | < | 0 | ٧ | В | 2 | R | n | < | В | X | 2 | 2 | S | ٧ | В | В | Д | C | O | Д | Ξ | H | H | Д | D | Ξ | П | I | 1 | 7 | ı | 2 | Z | Ь | Ь | × | S | S | Ш | S | 0 | 긔 | 11 | Z | T | 0 | כ | 0 | 11 | | ammonium in major rivers | 0.4 | 1 | 0 | 0 | 0 | 1 | 0.6 | 1 | 1 | 1 | 1 | 1 | 0.8 | 0.8 | 0 | 1 | 0.8 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0.8 | 0.8 | 0 | 0 | 1 | 0 | 0 | 0 | 0.8 | 0.6 | 0.8 | 0 | 0.8 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | | Mean concentration of | phosphates in major rivers | 0.4 | 1 | 0 | 0 | 0 | 1 | 0.6 | 1 | 1 | 1 | 1 | 1 | 0 | 0.8 | 0 | 1 | 0.8 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0.8 | 0.8 | 0 | 0 | 1 | 1 | 0 | 0.6 | 0.8 | 0.6 | 0 | 1 | 0.8 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0.8 | 1 | 0 | 0 | 1 | 1 | 0.8 | | Mean concentration of nitrates
in major rivers | 0.4 | 1 | 0 | ٥ | 0 | 1 | 0.6 | 1 | , | 1 | 1 | 1 | 0.8 | 0.8 | 0 | 1 | 0.8 | 1 | 0 | 0 | , | 0 | 0 | 1 | 0 | 0 | 0.8 | 0.8 | 0 | 0 | 1 | 1 | 0 | 0.6 | 0.8 | 0 | 0 | 1 | 0.8 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0.8 | 1 | 0 | 0 | 1 | , | 0.8 | | Mean concentration of total | 0.4 | 1 | U | 0 | 0 | - 1 | 0.0 | - 1 | 1 | | 1 | - 1 | 0.0 | 0.0 | U | - 1 | 0.0 | 1 | U | U | 1 | U | U | 1 | U | U | 0.0 | 0.0 | 0 | U | - 1 | - 1 | U | 0.0 | 0.0 | U | U | -1 | 0.0 | U | U | U | - 1 | U | 1 | | U | 0.0 | - 1 | U | U | 1 | 1 | 0.0 | | phosphorus in major lakes | 1 | 0 | 0 | 0 | 0 | 1 | 0.6 | 1 | 1 | 1 | 0.8 | 0 | 0.8 | 0.8 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0.8 | 0 | 0 | 0 | 1 | 3.4 | 0 | 0.6 | 0.8 | 0 | 0 | 1 | 0.8 | 0 | 0 | 0 | 0.6 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0.8 | | Mean concentration of nitrates | T | | | | | | T | | | | T | T | | | | | \Box | | | in major lakes | 1 | 0 | 0 | 0 | 0 | 1 | 0.6 | - 1 | 0 | 1 | 0.8 | 0 | 0.8 | 0.8 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0.8 | 0 | 0 | 0 | 1 | 1 | 0 | 0.6 | 0.8 | 0 | 0 | 1 | 0.8 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0.8 | | Mean concentration of nitrates | , | 0 | 0 | 0 | 0 | | 0 | 0 | | 1 | 0.8 | 0 | 0 | 0.8 | 0 | 0 | 0 | | 0 | 0 | , | 0 | 0 | , | 0 | 0 | 0.8 | 0.8 | 0 | 0 | | | 0.8 | 0.6 | 0 | 0 | 0 | 0.0 | 0.8 | 0 | 0 | 0 | 0.8 | 0 | 1 | | 0 | 0 | 1 | 0 | , | , | | 0.8 | | in groundwater Population connected to a | 1 | U | 0 | 0 | 0 | - 1 | 0 | 0 | 0 | - 1 | 0.8 | U | U | 0.8 | U | U | 0 | - 1 | 0 | 0 | - 1 | 0 | 0 | 1 | U | 0 | 0.8 | 0.8 | 0 | 0 | - 1 | - 1 | 0.8 | 0.0 | U | U | U | 0.6 | 0.8 | U | U | U | 0.8 | U | 1 | U | U | U | 1 | U | 1 | 1 | - 1 | 0.8 | | wastewater collecting system | (with and without treatment | facilities) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0.8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.8 | 0.8 | 0 | 0 | 0.8 | 0 | 0 | 0 | 0.8 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | Wastewater treated in urban | 47 wastewater treatment plants
(primary, secondary, tertiary) | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0.8 | 0 | 0.6 | 1 | 0 | 0.8 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0.8 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 | 1 | 0 | 0 | 0 | 0 | 0.8 | 1 | 0 | , | 0 | | 48 Wastewater discharged | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0.0 | 1 | 0.0 | 1 | 0 | 0.0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0.8 | 0.0 | 0 | 0 | 0.8 | 0 | 0 | 0.8 | 0.0 | 0 | 1 | 0 | 0 | 0 | 0 | 0.8 | 1 | 0 | 1 | 0 | | Non-treated/not adequately | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | - 1 | 1 | 0.8 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | - 1 | 0 | 0 | , | 0 | 0 | 0.0 | 0 | 0 | 0 | - 1 | - 1 | 1 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0.0 | 0.8 | 0 | 1 | - 0 | 0 | 0 | 0 | 0.8 | 0 | 0 | | 0 | | Total areas under protection | 1 | 1 | 0 | 0 | 0 | 1 | 0 | - 1 | 0 | - 1 | 1 | 0.8 | 0 | - 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | - 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 | 1 | - 0 | 0 | 0 | 0 | 0.8 | 0 | 0 | - 1 | 0 | | 50 (IUCN-categories) | 1 | 1 | 1 | 0 | 0.6 | 1 | 0.8 | 1 | 1 | 1 | 1 | 0.8 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.8 | 0.8 | 0 | 0 | 0.4 | 1 | 1 | 0.8 | 0.8 | 0 | 0 | 0.6 | 1 | 0.8 | 1 | 0.4 | 0 | 0.8 | 1 | 1 | 1 | 0 | 1 | 1 | 0.8 | 0 | 1 | 1 | 0 | | Total forest area (forest and | \Box | | | other wooded land) | 1 | 1 | 1 | 0 | 0 | - 1 | 0 | - 1 | 0 | 1 | 1 | 0 | 0.6 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0.2 | 0.4 | 0 | 1 | 0 | 1 | 1 | 1 | 0.8 | 0 | 0.6 | 0 | 1 | 0.8 | 1 | 0.4 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0.8 | 1 | 1 | 1 | 0 | | Number of species protected —
mammals, birds, fishes, reptiles, | mammais, birds, fishes, reptiles,
52 amphibians, invertebrates, | , , | | | vascular plants, mosses, lichens, | fungi, algae | 1 | 1 | 1 | 0 | 0.6 | 1 | 0.6 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0.8 | 1 | 0 | 0.4 | 0 | 1 | 1 | 0.8 | 0 | 0 | 0 | 1 | 0.8 | 0 | 0 | 0 | 0 | 0 | 1 | - 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0.8 | | Number of species threatened — | mammals, birds, fishes, reptiles, | 53 amphibians, invertebrates,
vascular plants, mosses, lichens, | fungi, algae | 1 | 1 | 1 | 0 | 0.6 | 1 | 0.6 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.8 | 1 | 0 | 0.4 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.8 | 0.8 | 0 | 0 | 0 | 0.8 | 0 | 1 | 1 | 0 | 0.8 | 1 | 0 | 1 | 1 | 1 | 0.8 | | 54 Total land uptake | 1 | 0 | 0 | 0 | 0.6 | _ | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | | 0.8 | - | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0.8 | 0.8 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0.8 | 1 | 0 | 0 | 0.6 | | • | | | - | | ,,,, | | _ | | | | | | - | | - | | | _ | - | - | | | _ | | - | ,,,, | | _ | | | | | | - | - | - | - | | | _ | | | - | | | | - | - | | | | - | _ | | $1-data\ set\ and\ related\ information\ fully\ available.$ $0.2,\,0.4,\,0.6,\,0.8$ – information related to the update regularity, application of standard production methodology, data interpretation and/or data source not available.